The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Overview

Pixel-level Self-Paced Learning for Super-Resolution

This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resolution, which has been accepted by ICASSP 2020.

[arxiv][PDF]

trained model files: Baidu Pan(code: v0be)

Requirements

This code is forked from thstkdgus35/EDSR-PyTorch. In the light of its README, following libraries are required:

  • Python 3.6+ (Python 3.7.0 in my experiments)
  • PyTorch >= 1.0.0 (1.1.0 in my experiments)
  • numpy
  • skimage
  • imageio
  • matplotlib
  • tqdm

Core Parts

pspl framework

Detail code can be found in Loss.forward, which can be simplified as:

# take L1 Loss as example

import torch
import torch.nn as nn
import torch.nn.functional as F
from . import pytorch_ssim

class Loss(nn.modules.loss._Loss):
    def __init__(self, spl_alpha, spl_beta, spl_maxVal):
        super(Loss, self).__init__()
        self.loss = nn.L1Loss()
        self.alpha = spl_alpha
        self.beta = spl_beta
        self.maxVal = spl_maxVal

    def forward(self, sr, hr, step):
        # calc sigma value
        sigma = self.alpha * step + self.beta
        # define gauss function
        gauss = lambda x: torch.exp(-((x+1) / sigma) ** 2) * self.maxVal
        # ssim value
        ssim = pytorch_ssim.ssim(hr, sr, reduction='none').detach()
        # calc attention weight
        weight = gauss(ssim).detach()
        nsr, nhr = sr * weight, hr * weight
        # calc loss
        lossval = self.loss(nsr, nhr)
        return lossval

the library pytorch_ssim is focked from Po-Hsun-Su/pytorch-ssim and rewrite some details for adopting it to our requirements.

Attention weight values change according to SSIM Index and steps: attention values

Citation

If you find this project useful for your research, please cite:

@inproceedings{lin2020pixel,
  title={Pixel-Level Self-Paced Learning For Super-Resolution}
  author={Lin, Wei and Gao, Junyu and Wang, Qi and Li, Xuelong},
  booktitle={ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  year={2020},
  pages={2538-2542}
}
Owner
Elon Lin
Elon Lin
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Amin Rezaei 126 Dec 27, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022