Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

Overview

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

Pytorch Implementation for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

If the project is useful to you, please give us a star. ⭐️

image

@article{gao2021disco,
  title={DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning},
  author={Gao, Yuting and Zhuang, Jia-Xin and Li, Ke and Cheng, Hao and Guo, Xiaowei and Huang, Feiyue and Ji, Rongrong and Sun, Xing},
  journal={arXiv preprint arXiv:2104.09124},
  year={2021}
}

Checkpoints

Teacher Models

Architecture Self-supervised Methods Model Checkpoints
ResNet152 MoCo-V2 Model
ResNet101 MoCo-V2 Model
ResNet50 MoCo-V2 Model

For teacher models such as ResNet-50*2 etc, we use their official implementation, which can be downloaded from their github pages.

Student Models by DisCo

Teacher/Students Efficient-B0 ResNet-18 Vit-Tiny XCiT-Tiny
ResNet-50 Model Model - -
ResNet-101 Model Model - -
ResNet-152 Model Model - -
ResNet-50*2 Model Model - -
ViT-Small - - Model -
XCiT-Small - - - Model

Requirements

  • Python3

  • Pytorch 1.6+

  • Detectron2

  • 8 GPUs are preferred

  • ImageNet, Cifar10/100, VOC, COCO

Run

Before running, we firstly move all data into share memory

cp /path/to/ImageNet /dev/shm

Pretrain Model

For pretraining baseline models with default hidden layer dimension in Tab1

# Switch to moco directory
cd moco

# R-50
python3 -u main_moco.py -a resnet50 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --hidden 2048 /dev/shm/ 2>&1 | tee ./logs/std.log
python3 main_lincls.py -a resnet50 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

# R-101
python3 -u main_moco.py -a resnet101 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --hidden 2048 /dev/shm/ 2>&1 | tee ./logs/std.log
python3 main_lincls.py -a resnet101 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

# R-152
python3 -u main_moco.py -a resnet152 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 800 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --hidden 2048 /dev/shm/ 2>&1 | tee ./logs/std.log
python3 main_lincls.py -a resnet152 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0799.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

# Mob
python3 -u main_moco.py -a mobilenetv3 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --hidden 512 /dev/shm 2>&1 |  tee ./logs/std.log
#          Evaluation
python3 main_lincls.py -a mobilenetv3 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

# Effi-B0
python3 -u main_moco.py -a efficientb0 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --hidden 1280 2>&1  |  tee ./logs/std.log
#          Evaluation
python3 main_lincls.py -a efficientb0 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

# Effi-B1
python3 -u main_moco.py -a efficientb1 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0  --hidden 1280  /dev/shm  2>&1 | tee ./logs/std.log
#          Evaluation
python3 main_lincls.py -a efficientb1 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

# R-18
python3 -u main_moco.py -a resnet18 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --hidden 1280 /dev/shm/ 2>&1 | tee ./logs/std.log
#          Evaluation
python3 main_lincls.py -a resnet18 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

# R-34
python3 -u main_moco.py -a resnet34 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --hidden 1280 /dev/shm/ 2>&1 | tee ./logs/std.log
#          Evaluation
python3 main_lincls.py -a resnet34 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

DisCo

For training DisCo in Tab1, Comparision with baseline

# Switch to DisCo directory
cd DisCo

# R-50 & Effib0
python3 -u main.py -a efficientb0 --lr 0.03 --batch-size 256 --moco-t 0.2 --aug-plus --dist-url 'tcp://localhost:10043' --multiprocessing-distributed --world-size 1 --rank 0 --mlp --cos --teacher_arch resnet50 --teacher /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log
#          Evaluation
python3 -u main_lincls.py -a efficientb0 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm 2>&1 | tee ./logs/std.log

# R50w2 & Effib0
python3 -u main.py -a efficientb0 --lr 0.03 --batch-size 256 --moco-t 0.2 --aug-plus --dist-url 'tcp://localhost:10043' --multiprocessing-distributed --world-size 1 --rank 0 --mlp --cos --teacher_arch resnet50w2 --teacher /path/to/swav_RN50w2_400ep_pretrain.pth.tar /dev/shm 2>&1 | tee ./logs/std.log
#          Evaluation
python3 yt_main_lincls.py -a resnet18 --learning-rate 30.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar  /dev/shm 2>&1 | tee ./logs/std.log

For Tab2, Linear evaluation top-1 accuracy (%) on ImageNet compared with different distillation methods.

# RKD+DisCo, Eff-b0
python3 -u main_moco_distill_rkd.py -a efficientb0 --lr 0.03 --batch-size 256 --moco-t 0.2 --aug-plus --dist-url 'tcp://localhost:10043' --multiprocessing-distributed --world-size 1 --rank 0 --mlp --cos --teacher /path/to/teacher_res50.pth.tar --use-mse /dev/shm  2>&1 | tee ./logs/std.log
#                  Evaluation
python3 -u main_lincls.py -a efficientb0 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm 2>&1 | tee ./logs/std.log

# RKD, Eff-b0
python3 -u main_moco_distill_rkd.py -a efficientb0 --lr 0.03 --batch-size 256 --moco-t 0.2 --aug-plus --dist-url 'tcp://localhost:10043' --multiprocessing-distributed --world-size 1 --rank 0 --mlp --cos --teacher /path/to/teacher_res50.pth.tar /dev/shm  2>&1 | tee ./logs/std.log
#                  Evaluation
python3 -u main_lincls.py -a efficientb0 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm 2>&1 | tee ./logs/std.log

For Tab3 , **Object detection and instance segmentation results **

# Cp data to /dev/shm and set up path for Detectron2
cp -r /path/to/VOCdevkit/* /dev/shm/
cp -r /path/to/coco_2017 /dev/shm/coco
export DETECTRON2_DATASETS=/dev/shm

pip install /youtu-reid/jiaxzhuang/acmm/detectron2-0.4+cu101-cp36-cp36m-linux_x86_64.whl
cd detection

# Convert model for Detectron2
python3 convert-pretrain-to-detectron2.py /path/ckpt/checkpoint_0199.pth.tar ./output.pkl

# Evaluation on VOC
python3 train_net.py --config-file configs/pascal_voc_R_50_C4_24k_moco.yaml --num-gpus 8 --resume MODEL.RESNETS.DEPTH 34 MODEL.RESNETS.RES2_OUT_CHANNELS 64 2>&1 | tee ../logs/std.log
# Evaluation on CoCo
python3 train_net.py --config-file configs/coco_R_50_C4_2x_moco.yaml --num-gpus 8  --resume MODEL.RESNETS.DEPTH 18 MODEL.RESNETS.RES2_OUT_CHANNELS 64 2>&1 | tee ../logs/std.log

For Fig5 , evaluation on Semi-Supervised Tasks

# Copy 1%, 10% ImageNet from the complete ImageNet, according to split from SimCLR.
cd data
# Need to set up path to Compelete ImageNet and the output path.
python3 -u imagenet_1_fraction.py --ratio 1
python3 -u imagenet_1_fraction.py --ratio 10

# Evaluation on 1% ImageNet with Eff-B0 by DisCo
cp -r /path/to/imagenet_1_fraction/train  /dev/shm
cp -r /path/to/imagenet_1_fraction/val  /dev/shm/
python3 -u main_lincls_semi.py -a efficientb0 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm  2>&1 | tee ./logs/std.log

# Evaluation on 10% ImageNet with R-18 by DisCo
cp -r /path/to/imagenet_10_fraction/train  /dev/shm
cp -r /path/to/imagenet_10_fraction/val  /dev/shm/
python3 -u main_lincls_semi.py -a resnet18 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm  2>&1 | tee ./logs/std.log

For Fig6, evaluation on Cifar10/Cifar100

# Copy Cifar10/100 to /dev/shm
cp /path/to/Cifar10/100 /dev/shm

# Evaluation on 1% Cifar10 with Eff-B0 by DisCo
python3 cifar_main_lincls.py -a efficientb0 --dataset cifar10 --lr 3 --epochs 200 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm 2>&1 | tee ./logs/std.log
# Evaluation on  Cifar100 with Resnet18 by DisCo
python3 cifar_main_lincls.py -a resnet18 --dataset cifar100 --lr 3 --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm 2>&1 | tee ./logs/std.log

For Tab4, Linear evaluation top-1 accuracy (%) on ImageNet, compared with SEED with consistent dimension in hidden layer.

python3 -u main.py -a efficientb0 --lr 0.03 --batch-size 256 --moco-t 0.2 --aug-plus --dist-url 'tcp://localhost:10043' --multiprocessing-distributed --world-size 1 --rank 0 --mlp --cos --teacher_arch resnet50 --teacher /path/to/ckpt/checkpoint_0199.pth.tar --hidden 2048 /dev/shm/ 2>&1 | tee ./logs/std.log
#          Evaluation
python3 -u main_lincls.py -a efficientb0 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm 2>&1 | tee ./logs/std.log

For Tab5, Linear evaluation top-1 accuracy (%) on ImageNet with SwAV as the testbed.

# SwAV, Train with SwAV only
cd swav-master
python3 -m torch.distributed.launch --nproc_per_node=8 main_swav.py \
        --data_path /dev/shm/train \
        --base_lr 0.6 \
        --final_lr 0.0006 \
        --warmup_epochs 0 \
        --crops_for_assign 0 1 \
        --size_crops 224 96 \
        --nmb_crops 2 6 \
        --min_scale_crops 0.14 0.05 \
        --max_scale_crops 1. 0.14 \
        --use_fp16 true \
        --freeze_prototypes_niters 5005 \
        --queue_length 3840 \
        --epoch_queue_starts 15 \
        --dump_path ./ckpt \
        --sync_bn pytorch \
        --temperature 0.1 \
        --epsilon 0.05 \
        --sinkhorn_iterations 3 \
        --feat_dim 128 \
        --nmb_prototypes 3000 \
        --epochs 200 \
        --batch_size 64 \
        --wd 0.000001 \
        --arch efficientb0 \
        --use_fp16 true 2>&1 | tee ./logs/std.log
# Evaluation
python3 -m torch.distributed.launch --nproc_per_node=8 eval_linear.py --arch efficientb0 --data_path /dev/shm --pretrained /path/to/ckpt/checkpoints/ckp-199.pth 2>&1 | tee ./logs/std.log

# DisCo + SwAV
python3 -m torch.distributed.launch --nproc_per_node=8 main_swav_distill.py \
        --data_path /dev/shm/train \
        --base_lr 0.6 \
        --final_lr 0.0006 \
        --warmup_epochs 0 \
        --crops_for_assign 0 1 \
        --size_crops 224 96 \
        --nmb_crops 2 6 \
        --min_scale_crops 0.14 0.05 \
        --max_scale_crops 1. 0.14 \
        --use_fp16 true \
        --freeze_prototypes_niters 5005 \
        --queue_length 3840 \
        --epoch_queue_starts 15 \
        --dump_path ./ckpt \
        --sync_bn pytorch \
        --temperature 0.1 \
        --epsilon 0.05 \
        --sinkhorn_iterations 3 \
        --feat_dim 128 \
        --nmb_prototypes 3000 \
        --epochs 200 \
        --batch_size 64 \
        --wd 0.000001 \
        --arch efficientb0 \
        --pretrained /path/to/swav_800ep_pretrain.pth.tar 2>&1 | tee ./logs/std.log

For Tab6, Linear evaluation top-1 accuracy (%) on ImageNet with variants of teacher pre-training methods.

# SwAV
python3 -u main.py -a resnet34 --lr 0.03 --batch-size 256 --moco-t 0.2 --aug-plus --dist-url 'tcp://localhost:10043' --multiprocessing-distributed --world-size 1 --rank 0 --mlp --cos --teacher_arch SWAVresnet50 --teacher /path/to/swav_800ep_pretrain.pth.tar /dev/shm 2>&1 | tee ./logs/std.log

Visualization

cd DisCo
# Generate Embed
# Move Embed to data path

python -u draw.py

Thanks

Code heavily depends on MoCo-V2, Detectron2.

Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Qiangeng Xu 662 Jan 01, 2023
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral

Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga

2.9k Dec 16, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021