A testcase generation tool for Persistent Memory Programs.

Overview

PMFuzz

PMFuzz

PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck)

If you find PMFuzz useful in your research, please cite:

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan
PMFuzz: Test Case Generation for Persistent Memory Programs
The International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2021

BibTex

@inproceedings{liu2021pmfuzz,
  title={PMFuzz: Test Case Generation for Persistent Memory Programs},
  author={Liu, Sihang and Mahar, Suyash and Ray, Baishakhi and Khan, Samira},
  booktitle={Proceedings of the Twenty-sixth International Conference on Architectural Support for Programming Languages and Operating Systems},
  year={2021}
}

Dependencies

PMFuzz was tested using the following environment configuration, other versions may work:

  1. Ubuntu 18.04
  2. NDCTL v64 or higher
  3. libunwind (libunwind-dev)
  4. libini-config (libini-config-dev)
  5. Python 3.8
  6. GNUMake >= 3.82
  7. Kernel version 5.4
  8. Anaconda or virtualenv (recommended)

For compiling documentation:

  1. doxygen
  2. pdflatex
  3. doxypypy

Compiling PMFuzz

Build PMFuzz and AFL

make -j $(nproc --all)

Install PMFuzz

sudo make install

Now, pmfuzz-fuzz should be available as an executable:

pmfuzz-fuzz --help

The following man pages are also installed:

man 1 pmfuzz-fuzz
man 7 libpmfuzz
man 7 libfakepmfuzz

To uninstall PMFuzz, run the following command:

sudo make uninstall

Compiling PMFuzz Docker image

PMFuzz also comes with a docker file to automatically configure and install pmfuzz. To build the image, run the following command from the root of the repository:

docker build -t pmfuzz-v0.9 .

The raw dockerfile is also available here: /Dockerfile.

Using PMFuzz

After installing PMFuzz, use annotations by including the PMFuzz header file:

#include "pmfuzz/pmfuzz.h"

int main() {
	printf("PMFuzz version: %s\n", pmfuzz_version_str);
}

The program would then have to be linked with either libpmfuzz or libfakepmfuzz. e.g.,

example: example.o
	$(CXX) -o $@ $< -lfakepmfuzz # or -lpmfuzz

To compile a program linked with libpmfuzz, you'd need to use PMFuzz's AFL++ version of gcc/clang. Check build/bin after building PMFuzz.

For debugging, libfakepmfuzz exports the same interface but no actual tracking mechanism, allowing it to compile with any C/C++ compiler.

An example program is available in src/example. The original ASPLOS 2021 artifact is available at https://github.com/Systems-ShiftLab/pmfuzz_asplos21_ae.

libpmfuzz API is available at docs/libpmfuzz.7.md

Compiling Documentation

Run make docs from the root, and all the documentation will be linked in the docs/ directory.

Some man pages are available as markdown formatted files:

  1. docs/libpmfuzz.7.md
  2. docs/pmfuzz-fuzz.1.md

Running custom configuration

PMFuzz uses a YML based configuration to set different parameters for fuzzing, to write a custom configuration, please follow one of the existing examples in src/pmfuzz/configs/examples/ directory.

More information on PMFuzz's syntax is here.

Modifying PMFuzz

PMFuzz was written in a modular way allowing part of PMFuzz's components to be swapped with something that has the same interface. If you have a question please open a new issue or a discussion.

Other useful information

Env variables

NOTE: If a variable doesn't have a possible value next to it, that variable would be enabled by setting it to any non-empty value (including 0).

  1. USE_FAKE_MMAP=(0,1): Enables fake mmap which mounts an image in the volaile memory.
  2. PMEM_MMAP_HINT=<addr>: Address of the mount point of the pool.
  3. ENABLE_CNST_IMG=(0,1): Disables default PMDK's behaviour that generates non-identical images for same input.
  4. FI_MODE=(<empty or unset>|IMG_GEN|IMG_REP): See libpmfuzz.c
  5. FAILURE_LIST=<path-to-output-file>: See libpmfuzz.c
  6. PMFUZZ_DEBUG=(0,1): Enables debug output from libpmfuzz
  7. ENABLE_PM_PATH: Enables deep paths in PMFuzz
  8. GEN_ALL_CS: Partially disables the probabilistic generation of crash sites and more of them are generated from libpmfuzz.c
  9. IMG_CREAT_FINJ: Disables the probabilistic generation of crash sites and all of them are generated from libpmfuzz.c
  10. PMFUZZ_SKIP_TC_CHECK: Disable testcase size check in AFL++
  11. PRIMITIVE_BASELINE_MODE: Makes workload delete image on start if the pool exists

Adding git hook for development

Following command adds a pre-commit hook to check if the tests pass:

git config --local core.hooksPath .githooks/

Reasons for Common errors

1. FileNotFoundError for instance's pid file

Raised when AFL cannot bind to a free core or no core is free.

2. Random tar command failed

Check if no free disk space is left on the device

3. shmget (2): No space left on device

Run:

ipcrm -a

Warning: This removes all user owned shared memory segments, don't run with superuser privilege or on a machine with other critical applications running.

Licensing

PMFuzz is licensed under BSD-3-clause except noted otherwise.

PMFuzz uses of the following open-source software:

  1. Preeny (license)
    Preeny was modified to fix a bug in desock. All changes are contained in vendor/pathes/preeny_path
  2. AFL++ (license)
    AFL++ was modified to include support for persistent memory tracking for PMFuzz.
Owner
Systems Research at ShiftLab
Systems Research at ShiftLab
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 734 Jan 03, 2023