Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

Overview

Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Pyramid Occupancy Network architecture

Data generation

In our work we report results on two large-scale autonomous driving datasets: NuScenes and Argoverse. The birds-eye-view ground truth labels we use to train and evaluate our networks are generated by combining map information provided by the two datasets with 3D bounding box annotations, which we rasterise to produce a set of one-hot binary labels. We also make use of LiDAR point clouds to infer regions of the birds-eye-view which are completely occluded by buildings or other objects.

NuScenes

To train our method on NuScenes you will first need to

  1. Download the NuScenes dataset which can be found at https://www.nuscenes.org/download. Only the metadata, keyframe and lidar blobs are necessary.
  2. Download the map expansion pack. Note that to replicate our original results you should use the original version of the expansion (v1.0). The later versions fixed some bugs with the original maps so we would expect even better performance!
  3. Install the NuScenes devkit from https://github.com/nutonomy/nuscenes-devkit
  4. Cd to mono-semantic-maps
  5. Edit the configs/datasets/nuscenes.yml file, setting the dataroot and label_root entries to the location of the NuScenes dataset and the desired ground truth folder respectively.
  6. Run our data generation script: python scripts/make_nuscenes_labels.py. Bewarned there's a lot of data so this will take a few hours to run!

Argoverse

To train on the Argoverse dataset:

  1. Download the Argoverse tracking data from https://www.argoverse.org/data.html#tracking-link. Our models were trained on version 1.1, you will need to download the four training blobs, validation blob, and the HD map data.
  2. Install the Argoverse devkit from https://github.com/argoai/argoverse-api
  3. Cd to mono-semantic-maps
  4. Edit the configs/datasets/argoverse.yml file, setting the dataroot and label_root entries to the location of the install Argoverse data and the desired ground truth folder respectively.
  5. Run our data generation script: python scripts/make_argoverse_labels.py. This script will also take a while to run!

Training

Once ground truth labels have been generated, you can train our method by running the train.py script in the root directory:

python train.py --dataset nuscenes --model pyramid

The --dataset flag allows you to specify the dataset to train on, either 'argoverse' or 'nuscenes'. The model flag allows training of the proposed method 'pyramid', or one of the baseline methods ('vpn' or 'ved'). Additional command line options can be specified by passing a list of key-value pairs to the --options flag. The full list of configurable options can be found in the configs/defaults.yml file.

Owner
Thomas Roddick
Thomas Roddick
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 734 Jan 03, 2023
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
Object detection evaluation metrics using Python.

Object detection evaluation metrics using Python.

Louis Facun 2 Sep 06, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023