The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Overview

Kernelized-HRM

Jiashuo Liu, Zheyuan Hu

The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the codes for our Classification with Spurious Correlation and Regression with Selection Bias simulated experiments, including the data generation process, the whole Kernelized-HRM algorithm and the testing process.

Details

There are two files, named KernelHRM_sim1.py and KernelHRM_sim2.py, which contains the code for the classification simulation experiment and the regression simulation experiment, respectively. The details of codes are:

  • generate_data_list: generate data according to the given parameters args.r_list.

  • generate_test_data_list: generate the test data for Selection Bias experiment, where the args.r_list is pre-defined to [-2.9,-2.7,...,-1.9].

  • main_KernelHRM: the whole framework for our Kernelized-HRM algorithm.

Hypermeters

There are many hyper-parameters to be tuned for the whole framework, which are different among different tasks and require users to carefully tune. Note that although we provide the hyper-parameters for the simulated experiments, it is possible that the results are not exactly the same as ours, which may due to the randomness or something else.

Generally, the following hyper-parameters need carefully tuned:

  • k: controls the dimension of reduced neural tangent features
  • whole_epoch: controls the overall number of iterations between the frontend and the backend
  • epochs: controls the number of epochs of optimizing the invariant learning module in each iteration
  • IRM_lam: controls the strength of the regularizer for the invariant learning
  • lr: learning rate
  • cluster_num: controls the number of clusters

Further, for the experimental settings, the following parameters need to be specified:

  • r_list: controls the strength of spurious correlations
  • scramble: similar to IRM[2], whether to mix the raw features
  • num_list: controls the number of data points from each environment

As for the optimal hyper-parameters for our simulation experiments, we put them into the reproduce.sh file.

Others

Similar to HRM[3], we view the proposed Kernelized-HRM as a framework, which converts the non-linear and complicated data into linear and raw feature data by neural tangent kernel and includes the clustering module and the invariant prediction module. In practice, one can replace each model to anything they want with the same effect.

Though I hate to mention it, our method has the following shortcomings:

  • Just like the original HRM[3], the convergence of the frontend module cannot be guaranteed, and we notice that there may be some cases the next iteration does not improve the current results or even hurts.
  • Hyper-parameters for different tasks may be quite different and need to be tuned carefully.
  • Whether this algorithm can be extended to more complicated image data, such as PACS, NICO et al. remains to be seen.(Maybe later we will have a try?)

Reference

[1] Jiasuho Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen. Kernelized Heterogeneous Risk Minimization. In NeurIPS 2021.

[2] Arjovsky M, Bottou L, Gulrajani I, et al. Invariant risk minimization.

[3] Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen. Heterogeneous Risk Minimziation. In ICML 2021.

Owner
Liu Jiashuo
THU-TrustAI(THU-TAI) Group
Liu Jiashuo
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
190 Jan 03, 2023
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022