Repo 4 basic seminar §How to make human machine readable"

Overview

WORK IN PROGRESS...

Notebooks from the Seminar:

Human Machine Readable < WS21/22

Introduction into programming

Georg Trogemann, Christian Heck, Mattis Kuhn, Ting Chun Liu

Basic Seminar Material/Sculpture/Code

Compact seminar 11 - 4 pm | 31.01.2022 until 11.02.2022

Online @ BigBlueButton

Experimental Informatics

Academy of Media Arts Cologne

Email: [email protected], [email protected], [email protected]

Description

The generation of text by means of deep neural nets (NLG) has spread rapidly. Among other things, text-based dialog systems such as chatbots, assistance systems (Alexa/Siri) or robot journalism are increasingly used in news portals, e-commerce and social media; wherever context-based, natural language or reader-friendly texts are to be generated from structured data. Deep writing techniques have also found their way into the arts and literature with the help of models such as ELMo (Embeddings from Language Models), BERT (Bidirectional Encoder Representations from Transformers) or GPT-2/3 (Generative Pre-Training Transformer).

The goal of the seminar is that at the end each student has produced (a) text based on one of the neural language models mentioned above. No matter if poem, prose, novella, essay, manifesto, shopping list or social bot.

The course is intended as a general introduction to programming. It will not only teach skills to generate texts, but also the basics of Python, a universal programming language that can be used to program images, PDFs or web applications. Furthermore, Python is the most widely used language in programming Artificial Intelligences, especially Deep Neural Nets.

We ask for registration at [email protected] until 20.09.2021. No prior knowledge of programming is required to participate in the basic seminar.

Course

Week 1 (31.1. - 4.2.)

Hands on Python

  • files
  • ...

Week 2 (7.2. - 11.2.)

Hands on Markov Chains

Hands on RNN/LSTM's

Hands on GPT-2/3

GPT-2

Copilot

AI-Dungeon


General Info

Executing the Notebooks:

  • You can run, execute and work on the following Notebooks here: Binder

Folder in KHM-Cloud:

  • ??Here?? you can find some material for the seminar

Anaconda & Jupyter Notebooks

Hands on Jupyter Notebooks
Hands on Markdown

Datasets


Cheat Sheets

Title URL
Python Beginner Cheat Sheet https://github.com/ehmatthes/pcc/releases/download/v1.0.0/beginners_python_cheat_sheet_pcc_all.pdf
Markdown Syntax https://help.github.com/articles/basic-writing-and-formatting-syntax/
Jupyter Notebook https://cheatography.com/weidadeyue/cheat-sheets/jupyter-notebook/pdf_bw/
Conda https://docs.conda.io/projects/conda/en/latest/_downloads/843d9e0198f2a193a3484886fa28163c/conda-cheatsheet.pdf

Binder

Owner
experimental-informatics
all notebooks here collected are only for teaching and research
experimental-informatics
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

77 Jan 05, 2023
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
VOneNet: CNNs with a Primary Visual Cortex Front-End

VOneNet: CNNs with a Primary Visual Cortex Front-End A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the followi

The DiCarlo Lab at MIT 99 Dec 22, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023