Evolution Strategies in PyTorch

Overview

Evolution Strategies

This is a PyTorch implementation of Evolution Strategies.

Requirements

Python 3.5, PyTorch >= 0.2.0, numpy, gym, universe, cv2

What is this? (For non-ML people)

A large class of problems in AI can be described as "Markov Decision Processes," in which there is an agent taking actions in an environment, and receiving reward, with the goal being to maximize reward. This is a very general framework, which can be applied to many tasks, from learning how to play video games to robotic control. For the past few decades, most people used Reinforcement Learning -- that is, learning from trial and error -- to solve these problems. In particular, there was an extension of the backpropagation algorithm from Supervised Learning, called the Policy Gradient, which could train neural networks to solve these problems. Recently, OpenAI had shown that black-box optimization of neural network parameters (that is, not using the Policy Gradient or even Reinforcement Learning) can achieve similar results to state of the art Reinforcement Learning algorithms, and can be parallelized much more efficiently. This repo is an implementation of that black-box optimization algorithm.

Usage

There are two neural networks provided in model.py, a small neural network meant for simple tasks with discrete observations and actions, and a larger Convnet-LSTM meant for Atari games.

Run python3 main.py --help to see all of the options and hyperparameters available to you.

Typical usage would be:

python3 main.py --small-net --env-name CartPole-v1

which will run the small network on CartPole, printing performance on every training batch. Default hyperparameters should be able to solve CartPole fairly quickly.

python3 main.py --small-net --env-name CartPole-v1 --test --restore path_to_checkpoint

which will render the environment and the performance of the agent saved in the checkpoint. Checkpoints are saved once per gradient update in training, always overwriting the old file.

python3 main.py --env-name PongDeterministic-v4 --n 10 --lr 0.01 --useAdam

which will train on Pong and produce a learning curve similar to this one:

Learning curve

This graph was produced after approximately 24 hours of training on a 12-core computer. I would expect that a more thorough hyperparameter search, and more importantly a larger batch size, would allow the network to solve the environment.

Deviations from the paper

  • I have not yet tried virtual batch normalization, but instead use the selu nonlinearity, which serves the same purpose but at a significantly reduced computational overhead. ES appears to be training on Pong quite well even with relatively small batch sizes and selu.

  • I did not pass rewards between workers, but rather sent them all to one master worker which took a gradient step and sent the new models back to the workers. If you have more cores than your batch size, OpenAI's method is probably more efficient, but if your batch size is larger than the number of cores, I think my method would be better.

  • I do not adaptively change the max episode length as is recommended in the paper, although it is provided as an option. The reasoning being that doing so is most helpful when you are running many cores in parallel, whereas I was using at most 12. Moreover, capping the episode length can severely cripple the performance of the algorithm if reward is correlated with episode length, as we cannot learn from highly-performing perturbations until most of the workers catch up (and they might not for a long time).

Tips

  • If you increase the batch size, n, you should increase the learning rate as well.

  • Feel free to stop training when you see that the unperturbed model is consistently solving the environment, even if the perturbed models are not.

  • During training you probably want to look at the rank of the unperturbed model within the population of perturbed models. Ideally some perturbation is performing better than your unperturbed model (if this doesn't happen, you probably won't learn anything useful). This requires 1 extra rollout per gradient step, but as this rollout can be computed in parallel with the training rollouts, this does not add to training time. It does, however, give us access to one less CPU core.

  • Sigma is a tricky hyperparameter to get right -- higher values of sigma will correspond to less variance in the gradient estimate, but will be more biased. At the same time, sigma is controlling the variance of our perturbations, so if we need a more varied population, it should be increased. It might be possible to adaptively change sigma based on the rank of the unperturbed model mentioned in the tip above. I tried a few simple heuristics based on this and found no significant performance increase, but it might be possible to do this more intelligently.

  • I found, as OpenAI did in their paper, that performance on Atari increased as I increased the size of the neural net.

Your code is making my computer slow help

Short answer: decrease the batch size to the number of cores in your computer, and decrease the learning rate as well. This will most likely hurt the performance of the algorithm.

Long answer: If you want large batch sizes while also keeping the number of spawned threads down, I have provided an old version in the slow_version branch which allows you to do multiple rollouts per thread, per gradient step. This code is not supported, however, and it is not recommended that you use it.

Contributions

Please feel free to make Github issues or send pull requests.

License

MIT

Owner
Andrew Gambardella
Machine Learning DPhil (PhD) student at University of Oxford
Andrew Gambardella
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022