[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

Related tags

Deep LearningArSSR
Overview

ArSSR

This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonance Image using Implicit Neural Representation" [ArXiv].

pipline

Figure 1: Oveview of the ArSSR model.

Abstract

High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In magnetic resonance imaging (MRI), restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3-dimensional (3D) HR image acquisition typically requests long scan time and, results in small spatial coverage and low signal-to-noise ratio (SNR). Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach a scale-specific projection between LR and HR images, thus these methods can only deal with a fixed up-sampling rate. For achieving different up-sampling rates, multiple SR networks have to be built up respectively, which is very time-consuming and resource-intensive. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the reconstruction of HR images with different up-scaling rates is defined as learning a continuous implicit voxel function from the observed LR images. Then the SR task is converted to represent the implicit voxel function via deep neural networks from a set of paired HR and LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Due to the continuity of the learned function, a single ArSSR model can achieve arbitrary up-sampling rate reconstruction of HR images from any input LR image after training. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales. All the NIFTI data about Figure 2 can be downloaded in LR image, 2x SR result, 3.2x SR result, 4x SR result.

example

Figure 2: An example of the SISR tasks of three different isotropic up-sampling scales k={2, 3.2, 4} for a 3D brain MR image by the single ArSSR model.


1. Running Environment

  • python 3.7.9
  • pytorch-gpu 1.8.1
  • tensorboard 2.6.0
  • SimpleITK, tqdm, numpy, scipy, skimage

2. Pre-trained Models

In the pre_trained_models folder, we provide the three pre-trained ArSSR models (with three difference encoder networks) on HCP-1200 dataset. You can improve the resolution of your images thourgh the following commands:

python test.py -input_path [input_path] \
               -output_path [output_path] \
               -encoder_name [RDN, ResCNN, or SRResNet] \
               -pre_trained_model [pre_trained_model]
               -scale [scale] \
               -is_gpu [is_gpu] \
               -gpu [gpu]

where,

  • input_path is the path of LR input image, it should be not contain the input finename.

  • output_path is the path of outputs, it should be not contain the output finename.

  • encoder_name is the type of the encoder network, including RDN, ResCNN, or SRResNet.

  • pre_trained_model is the full-path of pre-trained ArSSR model (e.g, for ArSSR model with RDB encoder network: ./pre_trained_models/ArSSR_RDN.pkl).

  • !!! Note that here encoder_name and pre_trained_model have to be matched. E.g., if you use the ArSSR model with ResCNN encoder network, encoder_name should be ResCNN and pre_trained_model should be ./pre_trained_models/ArSSR_ResCNN.pkl

  • scale is up-sampling scale k, it can be int or float.

  • is_gpu is the identification of whether to use GPU (0->CPU, 1->GPU).

  • gpu is the numer of GPU.

3. Training from Scratch

3.1. Data

In our experiment, we train the ArSSR model on the HCP-1200 Dataset. In particular, the HCP-1200 dataset is split into three parts: 780 training set, 111 validation set, and 222 testing set. More details about the HCP-1200 can be found in our manuscript [ArXiv]. And you can download the pre-processed training set and validation set [Google Drive].

3.2. Training

By using the pre-processed trainning set and validationset by ourselves from [Google Drive], the pipline of training the ArSSR model can be divided into three steps:

  1. unzip the downloaed file data.zip.
  2. put the data in ArSSR directory.
  3. run the following command.
python train.py -encoder_name [encoder_name] \
                -decoder_depth [decoder_depth]	\
                -decoder_width [decoder_width] \
                -feature_dim [feature_dim] \
                -hr_data_train [hr_data_train] \
                -hr_data_val [hr_data_val] \
                -lr [lr] \
                -lr_decay_epoch [lr_decay_epoch] \
                -epoch [epoch] \
                -summary_epoch [summary_epoch] \
                -bs [bs] \
                -ss [ss] \
                -gpu [gpu]

where,

  • encoder_name is the type of the encoder network, including RDN, ResCNN, or SRResNet.
  • decoder_depth is the depth of the decoder network (default=8).
  • decoder_width is the width of the decoder network (default=256).
  • feature_dim is the dimension size of the feature vector (default=128)
  • hr_data_train is the file path of HR patches for training (if you use our pre-processd data, this item can be ignored).
  • hr_data_val is the file path of HR patches for validation (if you use our pre-processd data, this item can be ignored).
  • lr is the initial learning rate (default=1e-4).
  • lr_decay_epoch is learning rate multiply by 0.5 per some epochs (default=200).
  • epoch is the total number of epochs for training (default=2500).
  • summary_epoch is the current model will be saved per some epochs (default=200).
  • bs is the number of LR-HR patch pairs, i.e., N in Equ. 3 (default=15).
  • ss is the number of sampled voxel coordinates, i.e., K in Equ. 3 (default=8000).
  • gpu is the number of GPU.

4. Citation

If you find our work useful in your research, please cite:

@misc{wu2021arbitrary,
      title={An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonance Image using Implicit Neural Representation}, 
      author={Qing Wu and Yuwei Li and Yawen Sun and Yan Zhou and Hongjiang Wei and Jingyi Yu and Yuyao Zhang},
      year={2021},
      eprint={2110.14476},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}
Owner
Qing Wu
Qing Wu
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023