Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Overview

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Paper: arXiv (ICRA 2021)

Video : https://youtu.be/CCDms7KWgI8

System figure


Shared resources


Testing / Evaluation

  1. Setup repository
    • Download test dataset, floorplans and pretrained model to <data>, <floorplan>, and <model> folders.
    • Download this repository. Copy source/sample_data_paths.json as source/data_paths.json and specify default paths.
    • For next steps, we will show example commands for one test datafile. See relevant code for more configuration options.
  2. IMU and WiFi Fusion by Optimization
    • Run source/optim/optimizer.py to geolocalize trajectory with floorplan
    • Sample command: python optimizer.py --out_dir <optimize_out_dir> --data_path <data_folder_path> --loop --no_gui --map_path <path_to_map_image> --map_latlong_path <path_to_csv_with_image_latlong_mapping>
    • E.g. : python optimizer.py --out_dir <output>/optim_s1 --data_path <data>/a001_d1_metrotown_0g --map_path <floorplan>/metrotown_0g.png --loop --no_gui
  3. Floorplan fusion by CNN
    • Run source/nn/nn_eval_full_traj.py for CNN prediction.
    • Sample command: python nn_eval_full_traj.py --floorplan_dir <directory_with_floorplan_images> --floorplan_dpi <floorplan_resolution> --input_dpi <resolution_suitable_for_network> --test_path <optimize_out_dir/data_folder> --out_dir <flow_out_dir> --model_path <fusion_dhl_cnn_checkpoint>
    • E.g. : python nn_eval_full_traj.py --floorplan_dir <floorplan> --test_path <output>/optim_s1/a001_d1_metrotown_0g --out_dir <output>/flow_s1 --model_path <model>/ckpt_fusion_dhl_unet.pt
  4. Run second iteration of optimization with prediction of 2.
    • Run source/optim/optimizer_with_flow.py
    • Sample command: python optimizer_with_flow.py --out_dir <optimize2_out_dir> --data_path <data_folder_path> --map_path <path_to_map_image> --result_dir <flow_out_dir> --loop --no_gui
    • E.g.: python optimizer_with_flow.py --out_dir <output>/optim_s2 --data_path <data>/a001_d1_metrotown_0g --map_path <floorplan>/metrotown_0g.png --result_dir <output>/flow_s1/output/full_result --loop --no_gui
  5. Repeat step 2 with results of 3 as test path --test_path <optimize2_out_dir/data_folder>
    • E.g.: python nn_eval_full_traj.py --floorplan_dir <floorplan> --test_path <output>/optim_s2/a001_d1_metrotown_0g --out_dir <output>/flow_s2 --model_path <model>/ckpt_fusion_dhl_unet.pt

Using your own dataset

The data collection, pre-processing and training steps are listed below. After completion, run testing/evaluation steps with the relevant paths

Data collection

  1. Create floorplan image according to the speicifed format and a known resolution. (Resolution must be chosen in such a way that cropped squares of size 250 by 250 pixel from the floorplan image have multiple rooms/corridors in them. The bigger the rooms, the smaller pixel/meter. We chose 2.5 pixels per meter for the shared dataset which are from shopping malls)
  2. Install Custom Maps app from apk or source and create map by aligning floorplan with google maps
    • During data collection, select map of current floorplan and manually click the current location at sparse points for evaluation.
  3. Put floorplans for training set, and floorplans for test purpose in separate folders and copy source/sample_map_info.json as map_info.json in these folders and specify the floorplan and image names.
  4. Install Sensor Data Logger app and click start service to record data
    • disable battery optimization for the app upon installation
    • location, WiFi and bluetooth needs to be switched on for data collection.
  5. Copy Sensor_Data_Logger output (in Downloads) to computer. Copy relevant Custom_Maps output files (in Downloads/mapLocalize) to a new folder named map inside the copied folder.

Data Preprocessing

  1. Download this repository. Copy source/sample_data_paths.json as source/data_paths.json and specify default paths.
  2. Download RoNIN resnet model checkpoint from the website
  3. Run source/preprocessing/compile_dataset.py to preprocess data into synced data streams and save as hdf5 files.
  4. Generate synthetic data (for training CNN)
    • Run source/gui/synthetic_data_generator.py to generate synthetic data by hand-drawing paths on a map
    • E.g. python synthetic_data_generator.py <path_to_map_image> --map_dpi <pixels_per_meter> --out_dir <path_to_directory> --add_noise
  5. For training groundtruth, run source/optim/optimizer with gui and manually specify constraints (if necessary) until the trajectory looks correct. (command in testing/evaluation)

Floorplan fusion by CNN

  1. Preprocess training data:
    • run source/nn/data_generator_train_real.py and source/nn/data_generator_train_syn.py with mode argument to generate real and synthetic dataset suitable for training the Neural Network. Please refer to the source code for the full list of command line arguments. Change _dpi to the pixel per meter resolution of your floorplan image.
    • Example command for real data generation: python3 data_generator_train_real.py --run_type 'full' --save_all_figs True --data_dir <path-to-real-data-folder> --datalist_file <path-to-list-of-real-data> --floorplans_dir <path-to-train-floorplans> --out_dir <path-to-output-real-dataset-folder>.
    • Example command for synthetic data generation: python3 data_generator_train_syn.py --save_all_figs True --data_dir <path-to-synthetic-data-folder-for-specific-floorplan> --datalist_file <path-to-list-of-synthetic-data-for-specific-floorplan> --floorplans_dir <path-to-floorplans> --out_dir <path-to-output-synthetic-dataset-folder> --which_mall <name-of-the-specific-floorplan>.
  2. Training
    • Run source/nn/nn_train.py to train or test the CNN. Please refer to the source code for the full list of command line arguments and their descriptions.
    • E.g. command for training: python3 nn_train.py --real_floorplans <path_to_real_data's_floorplans> --real_train_list <path_to_real_train_data_list> --real_val_list <path_to_real_validation_data_list> --real_dataset <path_to_real_dataset_from_previous_part> --syn_floorplans <path_to_synthetic_data's_floorplans> --syn_train_list <path_to_synthetic_train_data_list> --syn_val_list <path_to_synthetic_validation_data_list> --syn_dataset <path_to_synthetic_dataset_from_previous_part> --out_dir <path_to_outputs> --mode 'train'
    • E.g. command for testing: python3 nn_train.py --real_floorplans <path_to_real_data's_floorplans> --real_test_list <path_to_real_test_data_list> --real_dataset <path_to_real_dataset_from_previous_part> --syn_floorplans <path_to_synthetic_data's_floorplans> --syn_test_list <path_to_synthetic_test_datalist> --syn_dataset <path_to_synthetic_dataset_from_previous_part> --out_dir <path_to_outputs> --mode <'test_plot_flow'/'test_plot_traj'> --continue_from <path_to_saved_model>
    • Pretrained model

Citation

Please cite the following paper is you use the code, paper, data or any shared resources:

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments
Sachini Herath, Saghar Irandoust, Bowen Chen, Yiming Qian, Pyojin Kim and Yasutaka Furukawa
2021 IEEE International Conference on Robotics and Automation (ICRA) 
Owner
Sachini Herath
Sachini Herath
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and

Salesforce 72 Dec 05, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022