HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

Overview

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.
中文介绍

Features

  • Non-intrusive. Your iOS project does not need to be modified
  • All commands support real device and simulator
  • All commands support Objective-C and Swift project
  • Some commands provide interactive UI within the APP

Requirements

  • Xcode 12.3
  • 64-bit simulator or real device, iOS 9.0+
  • Debug configuration (or Optimization Level set [-O0]/[-Onone])

Installation

  1. Download all the files. I recommend cloning the repository.
  2. Open up (or create) ~/.lldbinit file, and append the following lines to the end of the file:
command script import /path/to/HMLLDB.py

For example, the command in my computer:
command script import /Users/pal/Desktop/gitProjects/HMLLDB/commands/HMLLDB.py

  1. Restart Xcode, run your own iOS project, click Pause program execution to enter the LLDB debugging mode, enter the command help, if you see the commands described below, the installation is successful.

Commands

Command Description
deletefile Delete the specified file in the sandbox
pbundlepath Print the path of the main bundle
phomedirectory Print the path of the home directory("~")
fclass Find the class containing the input name(Case insensitive)
fsubclass Find the subclass of the input
fsuperclass Find the superclass of the input
fmethod Find the specified method in the method list, you can also find the method list of the specified class
methods Execute [inputClass _methodDescription] or [inputClass _shortMethodDescription]
properties Execute [inputClass _propertyDescription]
ivars Execute [instance _ivarDescription]
plifecycle Print life cycle of UIViewController
redirect Redirect stdout/stderr
push Find UINavigationController in keyWindow then push a specified UIViewController
showhud Display the debug HUD on the key window, it is showing the memory usage, CPU utilization and FPS of the main thread
sandbox Presenting a sandbox browser that can share and delete files
inspect Inspect UIView
environment Show diagnostic environment.
...

All commands in the table can use help <command> to view the syntax and examples. For example, the output of help fmethod:

(lldb) help fmethod
     Find the method.  Expects 'raw' input (see 'help raw-input'.)

Syntax: fmethod

    Syntax:
        fmethod <methodName>  (Case insensitive.)
        fmethod [--class] <className>

    Options:
        --class/-c; Find all method in the class

    Examples:
        (lldb) fmethod viewdid
        (lldb) fmethod viewDidLayoutSubviews
        (lldb) fmethod -c UITableViewController

    This command is implemented in HMClassInfoCommands.py

Example

Some examples use the demo in the Kingfisher project.
It is recommended to click Pause program execution to enter the LLDB debugging mode to execute commands, instead of executing commands by hitting breakpoints.

deletefile

It is recommended to re-run the project after executing the command, because some data is still in the memory.

# Delete all file in the sandbox
(lldb) deletefile -a

# Delete the "~/Documents" directory
(lldb) deletefile -d

# Delete the "~/Library" directory
(lldb) deletefile -l

# Delete the "~/tmp" directory
(lldb) deletefile -t

# Delete the "~/Library/Caches" directory
(lldb) deletefile -c

# Delete the "~Library/Preferences" directory
(lldb) deletefile -p

# Delete the specified file or directory
(lldb) deletefile -f path/to/fileOrDirectory

pbundlepath & phomedirectory

# Print the path of the main bundle
(lldb) pbundlepath
[HMLLDB] /Users/pal/Library/Developer/CoreSimulator/Devices/D90D74C6-DBDF-4976-8BEF-E7BA549F8A89/data/Containers/Bundle/Application/84AE808C-6703-488D-86A2-C90004434D3A/Kingfisher-Demo.app

# Print the path of the home directory
(lldb) phomedirectory
[HMLLDB] /Users/pal/Library/Developer/CoreSimulator/Devices/D90D74C6-DBDF-4976-8BEF-E7BA549F8A89/data/Containers/Data/Application/3F3DF0CD-7B57-4E69-9F15-EB4CCA7C4DD8

# If it is running on the simulator, you can add the -o option to open path with Finder
(lldb) pbundlepath -o
(lldb) phomedirectory -o

fclass & fsubclass & fsuperclass & fmethod

These commands are optimized for Swift, and the namespace can be omitted when entering the Swift class.

fclass: Find all class names that contain the specified string.

(lldb) fclass NormalLoadingViewController
[HMLLDB] Waiting...
[HMLLDB] Count: 1 
Kingfisher_Demo.NormalLoadingViewController (0x102148fa8)

# Case insensitive
(lldb) fclass Kingfisher_Demo.im
[HMLLDB] Waiting...
[HMLLDB] Count: 2 
Kingfisher_Demo.ImageDataProviderCollectionViewController (0x102149a18)
Kingfisher_Demo.ImageCollectionViewCell (0x1021498e8)

fsubclass: Find all subclasses of a class.

(lldb) fsubclass UICollectionViewController
[HMLLDB] Waiting...
[HMLLDB] Subclass count: 10 
Kingfisher_Demo.InfinityCollectionViewController
Kingfisher_Demo.HighResolutionCollectionViewController
...

fsuperclass: Find the super class of a class.

(lldb) fsuperclass UIButton
[HMLLDB] UIButton : UIControl : UIView : UIResponder : NSObject

(lldb) fsuperclass KingfisherManager
[HMLLDB] Kingfisher.KingfisherManager : Swift._SwiftObject

fmethod: Find the specified method in the method list, you can also find the method list of the specified class.

# Find the specified method in the method list. Case insensitive.
(lldb) fmethod viewdidload
[HMLLDB] Waiting...
[HMLLDB] Methods count: 158 
(-) playbackControlsViewDidLoad:
	Type encoding:[email protected]:[email protected]
	Class:AVPlaybackControlsController
(-) turboModePlaybackControlsPlaceholderViewDidLoad:
	Type encoding:[email protected]:[email protected]
	Class:AVPlaybackControlsController
(-) viewDidLoad
	Type encoding:[email protected]:8
	Class:AVNewsWidgetPlayerBehaviorContext
...

# Option -c: Find the method list of the specified class. Case sensitive.
(lldb) fmethod -c ImageCache
[HMLLDB] Waiting...
[HMLLDB] Class: Kingfisher.ImageCache (0x10264c6f8)
Instance methods count: 3. Class method count: 0.
(-) cleanExpiredDiskCache
	Type encoding:[email protected]:8
(-) backgroundCleanExpiredDiskCache
	Type encoding:[email protected]:8
(-) clearMemoryCache
	Type encoding:[email protected]:8

methods & properties & ivars

methods: Execute [inputClass _methodDescription] or [inputClass _shortMethodDescription] properties: Execute [inputClass _propertyDescription] ivars: Execute [instance _ivarDescription]

These commands are optimized for Swift, and the namespace can be omitted when entering the Swift class.

# Syntax
methods [--short] <className/classInstance>
properties <className/classInstance>
ivars <Instance>

(lldb) methods NormalLoadingViewController
[HMLLDB] <Kingfisher_Demo.NormalLoadingViewController: 0x10d55ffa8>:
in Kingfisher_Demo.NormalLoadingViewController:
	Instance Methods:
		- (id) collectionView:(id)arg1 cellForItemAtIndexPath:(id)arg2; (0x10d523f30)
		- (long) collectionView:(id)arg1 numberOfItemsInSection:(long)arg2; (0x10d522a20)
		- (void) collectionView:(id)arg1 willDisplayCell:(id)arg2 forItemAtIndexPath:(id)arg3; (0x10d523af0)
		- (void) collectionView:(id)arg1 didEndDisplayingCell:(id)arg2 forItemAtIndexPath:(id)arg3; (0x10d522cb0)
		- (id) initWithCoder:(id)arg1; (0x10d522960)
...

# These commands can only be used for subclasses of NSObject
(lldb) methods KingfisherManager
[HMLLDB] KingfisherManager is not a subclass of NSObject

plifecycle

Used to print the life cycle of UIViewController.
In a non-intrusive way, and Xcode can set the console font color to make it clearer. It has become one of my favorite commands.

Usage:

  1. Create a Symbolic Breakpoint, and then add the method to be printed in the Symbol line.(e.g. -[UIViewController viewDidAppear:])
  2. Add a Action(Debugger Command), enter the plifecycle command
  3. Check the option: Automatically continue after evaluating actions

I usually use the -i option to ignore some system-generated UIViewController. img1

I often Enable viewDidAppear: and dealloc methods, and the other methods are set to Disable and started on demand, as shown below: img2

Output in Xcode: img3

It should be noted that there are two problems with this command.

  1. Cause UIViewController switching lag.
  2. The following warning may be triggered when starting the APP. You need to click Continue program execution in Xcode to let the APP continue to run.
Warning: hit breakpoint while running function, skipping commands and conditions to prevent recursion.

BTW, the source code provides other ways to use LLDB to print the life cycle.

redirect

Redirect stdout/stder.

# You can redirect the output of Xcode to Terminal if you use the simulator
# Open the terminal, enter the "tty" command, you can get the path: /dev/ttys000
(lldb) redirect both /dev/ttys000
[HMLLDB] redirect stdout successful
[HMLLDB] redirect stderr successful

push

Find UINavigationController in keyWindow then push a specified UIViewController.
Notice: push MyViewController needs to execute [[MyViewController alloc] init] first. If the initializer of the class requires parameters, or the class needs to pass parameters after initialization, this command may cause errors.
The GIF demo didn't use Kingfisher because the UIViewController in the demo depends on the storyboard.
img4

showhud

Display the debug HUD on the keyWindow, it is showing the memory usage, CPU utilization and FPS of the main thread. img5

Tapping the debug HUD will present a new view controller, and its function will be introduced later. img6

sandbox

Presenting a sandbox browser that can share and delete files.
It takes a few seconds to call the command for the first time. img7

inspect

Inspect UIView of the current page.
img8

environment

Show diagnostic environment.
You can see that one of items is [Git commit hash], which is one of the reasons why clone repository is recommended.

(lldb) environment
[HMLLDB] [Python version] 3.8.2 (default, Nov  4 2020, 21:23:28) 
		[Clang 12.0.0 (clang-1200.0.32.28)]
[HMLLDB] [LLDB version] lldb-1200.0.44.2
		Apple Swift version 5.3.2 (swiftlang-1200.0.45 clang-1200.0.32.28)
[HMLLDB] [Target triple] x86_64h-apple-ios-simulator
[HMLLDB] [Git commit hash] 088f654cb158ffb16019b2deca5dce36256837ad
[HMLLDB] [Optimized] False: 28  True: 0
[HMLLDB] [Xcode version] 1230
[HMLLDB] [Xcode build version] 12C33
[HMLLDB] [Model identifier] x86_64
[HMLLDB] [System version] iOS 13.0

If an error occurs

Just-in-time compilation via LLDB is not stable. If an error occurs, please check in order according to the following steps.

  1. pull the latest code. Check the Xcode version, HMLLDB generally only adapts to the latest Xcode version.
  2. Open the ~/.lldbinit file and make sure to import the HMLLDB.py at the end of the file so that its commands are not overwritten.
  3. After launching the APP, click Pause program execution to enter the LLDB debugging mode to execute commands, instead of executing commands by hitting breakpoints. (In general, you can execute commands by hitting breakpoints)
  4. Restart Xcode can solve most problems.
  5. Restart the computer.
  6. After completing the above steps, the command still fails. Please copy the error and post it to Issue, and execute the environment command, its output should also be posted to Issue.

License

HMLLDB is released under the MIT license. See LICENSE for details.

Owner
mao2020
iOS Developer
mao2020
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022