Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Overview

Natural Posterior Network

This repository provides the official implementation of the Natural Posterior Network (NatPN) and the Natural Posterior Ensemble (NatPE) as presented in the following paper:

Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions
Bertrand Charpentier*, Oliver Borchert*, Daniel Zügner, Simon Geisler, Stephan Günnemann
International Conference on Learning Representations, 2022

Features

The implementation of NatPN that is found in this repository provides the following features:

  • High-level estimator interface that makes NatPN as easy to use as Scikit-learn estimators
  • Simple bash script to train and evaluate NatPN
  • Ready-to-use PyTorch Lightning data modules with 8 of the 9 datasets used in the paper*

In addition, we provide a public Weights & Biases project. This project will be filled with training and evaluation runs that allow you (1) to inspect the performance of different NatPN models and (2) to download the model parameters. See the example notebook for instructions on how to use such a pretrained model.

*The Kin8nm dataset is not included as it has disappeared from the UCI Repository.

Installation

Prior to installation, you may want to install all dependencies (Python, CUDA, Poetry). If you are running on an AWS EC2 instance with Ubuntu 20.04, you can use the provided bash script:

sudo bash bin/setup-ec2.sh

In order to use the code in this repository, you should first clone the repository:

git clone [email protected]:borchero/natural-posterior-network.git natpn

Then, in the root of the repository, you can install all dependencies via Poetry:

poetry install

Quickstart

Shell Script

To simply train and evaluate NatPN on a particular dataset, you can use the train shell script. For example, to train and evaluate NatPN on the Sensorless Drive dataset, you can run the following command in the root of the repository:

poetry run train --dataset sensorless-drive

The dataset gets downloaded automatically the first time this command is called. The performance metrics of the trained model is printed to the console and the trained model is discarded. In order to track both the metrics and the model parameters via Weights & Biases, use the following command:

poetry run train --dataset sensorless-drive --experiment first-steps

To list all options of the shell script, simply run:

poetry run train --help

This command will also provide explanations for all the parameters that can be passed.

Estimator

If you want to use NatPN from your code, the easiest way to get started is to use the Scikit-learn-like estimator:

from natpn import NaturalPosteriorNetwork

The documentation of the estimator's __init__ method provides a comprehensive overview of all the configuration options. For a simple example of using the estimator, refer to the example notebook.

Module

If you need even more customization, you can use natpn.nn.NaturalPosteriorNetworkModel directly. The natpn.nn package provides plenty of documentation and allows to configure your NatPN model as much as possible.

Further, the natpn.model package provides PyTorch Lightning modules which allow you to train, evaluate, and fine-tune models.

Running Hyperparameter Searches

If you want to run hyperparameter searches on a local Slurm cluster, you can use the files provided in the sweeps directory. To run the grid search, simply execute the file:

poetry run python sweeps/<file>

To make sure that your experiment is tracked correctly, you should also set the WANDB_PROJECT environment variable in a place that is read by the slurm script (found in sweeps/slurm).

Feel free to adapt the scripts to your liking to run your own hyperparameter searches.

Citation

If you are using the model or the code in this repository, please cite the following paper:

@inproceedings{natpn,
    title={{Natural} {Posterior} {Network}: {Deep} {Bayesian} {Predictive} {Uncertainty} for {Exponential} {Family} {Distributions}},
    author={Charpentier, Bertrand and Borchert, Oliver and Z\"{u}gner, Daniel and Geisler, Simon and G\"{u}nnemann, Stephan},
    booktitle={International Conference on Learning Representations},
    year={2022}
}

Contact Us

If you have any questions regarding the code, please contact us via mail.

License

The code in this repository is licensed under the MIT License.

Owner
Oliver Borchert
MSc Data Engineering and Analytics @ TUM | Applied Science Intern @ AWS
Oliver Borchert
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
Differentiable Annealed Importance Sampling (DAIS)

Differentiable Annealed Importance Sampling (DAIS) This repository contains the code to reproduce the DAIS results from the paper Differentiable Annea

Guodong Zhang 6 Dec 26, 2021
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
a minimal terminal with python 😎😉

Meterm a terminal with python 😎 How to use Clone Project: $ git clone https://github.com/motahharm/meterm.git Run: in Terminal: meterm.exe Or pip ins

Motahhar.Mokfi 5 Jan 28, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023