Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Overview

Natural Posterior Network

This repository provides the official implementation of the Natural Posterior Network (NatPN) and the Natural Posterior Ensemble (NatPE) as presented in the following paper:

Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions
Bertrand Charpentier*, Oliver Borchert*, Daniel Zügner, Simon Geisler, Stephan Günnemann
International Conference on Learning Representations, 2022

Features

The implementation of NatPN that is found in this repository provides the following features:

  • High-level estimator interface that makes NatPN as easy to use as Scikit-learn estimators
  • Simple bash script to train and evaluate NatPN
  • Ready-to-use PyTorch Lightning data modules with 8 of the 9 datasets used in the paper*

In addition, we provide a public Weights & Biases project. This project will be filled with training and evaluation runs that allow you (1) to inspect the performance of different NatPN models and (2) to download the model parameters. See the example notebook for instructions on how to use such a pretrained model.

*The Kin8nm dataset is not included as it has disappeared from the UCI Repository.

Installation

Prior to installation, you may want to install all dependencies (Python, CUDA, Poetry). If you are running on an AWS EC2 instance with Ubuntu 20.04, you can use the provided bash script:

sudo bash bin/setup-ec2.sh

In order to use the code in this repository, you should first clone the repository:

git clone [email protected]:borchero/natural-posterior-network.git natpn

Then, in the root of the repository, you can install all dependencies via Poetry:

poetry install

Quickstart

Shell Script

To simply train and evaluate NatPN on a particular dataset, you can use the train shell script. For example, to train and evaluate NatPN on the Sensorless Drive dataset, you can run the following command in the root of the repository:

poetry run train --dataset sensorless-drive

The dataset gets downloaded automatically the first time this command is called. The performance metrics of the trained model is printed to the console and the trained model is discarded. In order to track both the metrics and the model parameters via Weights & Biases, use the following command:

poetry run train --dataset sensorless-drive --experiment first-steps

To list all options of the shell script, simply run:

poetry run train --help

This command will also provide explanations for all the parameters that can be passed.

Estimator

If you want to use NatPN from your code, the easiest way to get started is to use the Scikit-learn-like estimator:

from natpn import NaturalPosteriorNetwork

The documentation of the estimator's __init__ method provides a comprehensive overview of all the configuration options. For a simple example of using the estimator, refer to the example notebook.

Module

If you need even more customization, you can use natpn.nn.NaturalPosteriorNetworkModel directly. The natpn.nn package provides plenty of documentation and allows to configure your NatPN model as much as possible.

Further, the natpn.model package provides PyTorch Lightning modules which allow you to train, evaluate, and fine-tune models.

Running Hyperparameter Searches

If you want to run hyperparameter searches on a local Slurm cluster, you can use the files provided in the sweeps directory. To run the grid search, simply execute the file:

poetry run python sweeps/<file>

To make sure that your experiment is tracked correctly, you should also set the WANDB_PROJECT environment variable in a place that is read by the slurm script (found in sweeps/slurm).

Feel free to adapt the scripts to your liking to run your own hyperparameter searches.

Citation

If you are using the model or the code in this repository, please cite the following paper:

@inproceedings{natpn,
    title={{Natural} {Posterior} {Network}: {Deep} {Bayesian} {Predictive} {Uncertainty} for {Exponential} {Family} {Distributions}},
    author={Charpentier, Bertrand and Borchert, Oliver and Z\"{u}gner, Daniel and Geisler, Simon and G\"{u}nnemann, Stephan},
    booktitle={International Conference on Learning Representations},
    year={2022}
}

Contact Us

If you have any questions regarding the code, please contact us via mail.

License

The code in this repository is licensed under the MIT License.

Owner
Oliver Borchert
MSc Data Engineering and Analytics @ TUM | Applied Science Intern @ AWS
Oliver Borchert
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022