Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

Overview

MixFaceNets

This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks.

(Accepted in IJCB2021) https://ieeexplore.ieee.org/abstract/document/9484374

Paper Arxiv

Model MFLOPs Params (M) LFW% AgeDB-30% IJB-B( TAR at FAR1e–6) IJB-C( TAR at FAR1e–6) Pretrained model
MixFaceNet-M 626.1 3.95 99.68 97.05 91.55 93.42 pretrained-mode
ShuffleMixFaceNet-M 626.1 3.95 99.60 96.98 91.47 93.5 pretrained-mode
MixFaceNet-S 451.7 3.07 99.60 96.63 90.17 92.30 pretrained-mode
ShuffleMixFaceNet-S 451.7 3.07 99.58 97.05 90.94 93.08 pretrained-mode
MixFaceNet-XS 161.9 1.04 99.60 95.85 88.48 90.73 pretrained-mode
ShuffleMixFaceNet-XS 161.9 1.04 99.53 95.62 87.86 90.43 pretrained-mode

FLOPs vs. performance on LFW (accuracy), AgeDB-30 (accuracy), MegaFace (TAR at FAR1e-6), IJB-B (TAR at FAR1e-4), IJB-C (TAR at FAR1e-4) and refined version of MegaFace, noted as MegaFace (R), (TAR at FAR1e-6). Our MixFaceNet models are highlighted with triangle marker and red edge color.

LFW LFW

AgeDb-30 LFW

MegaFace LFW

MegaFace(R) LFW

IJB-B LFW

IJB-C LFW

If you find MixFaceNets useful in your research, please cite the following paper:

Citation

@INPROCEEDINGS{9484374,
  author={Boutros, Fadi and Damer, Naser and Fang, Meiling and Kirchbuchner, Florian and Kuijper, Arjan},
  booktitle={2021 IEEE International Joint Conference on Biometrics (IJCB)}, 
  title={MixFaceNets: Extremely Efficient Face Recognition Networks}, 
  year={2021},
  volume={},
  number={},
  pages={1-8},
  doi={10.1109/IJCB52358.2021.9484374}}


The model is trained with ArcFace loss using Partial-FC algorithms. If you train the MixfaceNets with ArcFace and Partial-FC, please follow their distribution licenses.

Citation

@inproceedings{deng2019arcface,
  title={Arcface: Additive angular margin loss for deep face recognition},
  author={Deng, Jiankang and Guo, Jia and Xue, Niannan and Zafeiriou, Stefanos},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4690--4699},
  year={2019}
}
@inproceedings{an2020partical_fc,
  title={Partial FC: Training 10 Million Identities on a Single Machine},
  author={An, Xiang and Zhu, Xuhan and Xiao, Yang and Wu, Lan and Zhang, Ming and Gao, Yuan and Qin, Bin and
  Zhang, Debing and Fu Ying},
  booktitle={Arxiv 2010.05222},
  year={2020}
}
Owner
Fadi Boutros
Fadi Boutros
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
Time Dependent DFT in Tamm-Dancoff Approximation

Density Function Theory Program - kspy-tddft(tda) This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff

Peter Borthwick 2 Nov 17, 2022
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022