Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Overview

OrthoHash

ArXiv (pdf)

Official pytorch implementation of the paper: "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

NeurIPS 2021

Released on September 29, 2021

Description

This paper proposes a novel deep hashing model with only a single learning objective which is a simplification from most state of the art papers generally use lots of losses and regularizer. Specifically, it maximizes the cosine similarity between the continuous codes and their corresponding binary orthogonal codes to ensure both the discriminative capability of hash codes and the quantization error minimization. Besides, it adopts a Batch Normalization layer to ensure code balance and leverages the Label Smoothing strategy to modify the Cross-Entropy loss to tackle multi-labels classification. Extensive experiments show that the proposed method achieves better performance compared with the state-of-the-art multi-loss hashing methods on several benchmark datasets.

How to run

Training

python main.py --codebook-method B --ds cifar10 --margin 0.3 --seed 59495

Run python main.py --help to check what hyperparameters to run with. All the hyperparameters are the default parameters to get the performance in the paper.

The above command should obtain mAP of 0.824 at best for CIFAR-10.

Testing

python val.py -l /path/to/logdir

Dataset

Category-level Retrieval (ImageNet, NUS-WIDE, MS-COCO)

You may refer to this repo (https://github.com/swuxyj/DeepHash-pytorch) to download the datasets. I was using the same dataset format as HashNet. See utils/datasets.py to understand how to save the data folder.

Dataset sample: https://raw.githubusercontent.com/swuxyj/DeepHash-pytorch/master/data/imagenet/test.txt

For CIFAR-10, the code will auto generate a dataset at the first run. See utils/datasets.py.

Instance-level Retrieval (GLDv2, ROxf, RPar)

This code base is a simplified version and we did not include everything yet. We will release a version that will include the dataset we have generated and also the corresponding evaluation metrics, stay tune.

Performance Tuning (Some Tricks)

I have found some tricks to further improve the mAP score.

Avoid Overfitting

As set by the previous protocols, the dataset is small in size (e.g., 13k training images for ImageNet100) and hence overfitting can easily happen during the training.

An appropriate learning rate for backbone

We set a 10x lower learning rate for the backbone to avoid overfitting.

Cosine Margin

An appropriate higher cosine margin should be able to get higher performance as it slow down the overfitting.

Data Augmentation

We did not tune the data augmentation, but we believe that appropriate data augmentation can obtain a little bit of improvement in mAP.

Database Shuffling

If you shuffle the order of database before calculate_mAP, you might get 1~2% improvement in mAP.

It is because many items with same hamming distance will not be sorted properly, hence it will affect the mAP calculation.

Codebook Method

Run with --codebook-method O might help to improve mAP by 1~2%. The improvement is explained in our paper.

Feedback

Suggestions and opinions on this work (both positive and negative) are greatly welcomed. Please contact the authors by sending an email to jiuntian at gmail.com or kamwoh at gmail.com or cs.chan at um.edu.my.

Related Work

  1. Deep Polarized Network (DPN) - (https://github.com/kamwoh/DPN)

Notes

  1. You may get slightly different performance as compared with the paper, the random seed sometime affect the performance a lot, but should be very close.
  2. I re-run the training (64-bit ImageNet100) with this simplified version can obtain 0.709~0.710 on average (paper: 0.711).

License and Copyright

The project is open source under BSD-3 license (see the LICENSE file).

©2021 Universiti Malaya.

Owner
Ng Kam Woh
- Deep Learning Beginner
Ng Kam Woh
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel

Hongyang Gao 95 Jul 24, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Code for "ATISS: Autoregressive Transformers for Indoor Scene Synthesis", NeurIPS 2021

ATISS: Autoregressive Transformers for Indoor Scene Synthesis This repository contains the code that accompanies our paper ATISS: Autoregressive Trans

138 Dec 22, 2022
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022