Implementation of PersonaGPT Dialog Model

Overview

PersonaGPT

An open-domain conversational agent with many personalities

PersonaGPT is an open-domain conversational agent cpable of decoding personalized and controlled responses based on user input. It is built on the pretrained DialoGPT-medium model, following the GPT-2 architecture. PersonaGPT is fine-tuned on the Persona-Chat dataset, with added special tokens to better distinguish between conversational history and personality traits for dyadic conversations. Furthermore, some active learning was used to train the model to do controlled decoding based on certain "action codes" (e.g., talk about work, ask about music interests).


Personalized Dialog Generation

Also called persona modeling, personalized dialog generation takes as input a set of personality facts and dialog history to generate responses that are (ideally) sensible and diverse, yet consistent with past responses and the given persona profile.

Example

Persona Facts
1 i am 64 years old but feel quite young.
2 i try to eat healthy but limit mcdonalds to once a week.
3 i regret working as a doctor for the last 20 years.
4 my secret hobby is making self-help youtube videos.
5 i've been to spain many times and wish i could go again.
Role Response
Human yo whats good fam?
Bot hello, how are you doing?
Human not bad what you doing today?
Bot eating a lot healthier now that i'm in my 60s
Human i'm more of a fast food guy
Bot me too but i'm very healthy so i try to avoid it
Human what do you do for fun?
Bot i make videos for fun and eat very healthy
Human nice what kind of videos?
Bot i love making videos about self help stuff
Human i think i need some help
Bot what kind of help would you like to get
Human i'm 21 and feel lost in life
Bot i can relate, i'm only 65

Controlled Response Generation

Another feature of PersonaGPT is generating responses that directs conversations toward certain topics of interests. The following is a self-play episode between 2 PersonaGPT agents, one interviews the other.

Bot 2's Persona Facts
1 i am a quiet engineer.
2 i'm single and am looking for love.
3 sadly, i don't have any relatable hobbies.
4 luckily, however, i am tall and athletic.
5 on friday nights, i watch re-runs of the simpsons alone.
Role Action Response
Bot 1 talk about movies hello do you like movies?
Bot 2 - i love the simpsons. how about you?
Bot 1 talk about music i like the walking dead. do you play an instrument?
Bot 2 - yes i play the violin.
Bot 1 ask about marital status are you married or single?
Bot 2 - i am single but i am looking for love.
Bot 1 talk about work my job is working in a factory. what's your occupation?
Bot 2 - engineer. i'm very quiet so no one hears me.
Bot 1 talk about hobbies do you have any hobbies?
Bot 2 - i watch reruns of the simpsons.
Bot 1 ask about favorite food what's your favorite food?
Bot 2 - i love pizza. how about yourself?
Bot 1 ask about pets i also love pizza. do you like animals?
Bot 2 - i have two dogs. what is your occupation?
Bot 1 talk about work i'm a factory worker. what's your dream job?
Bot 2 - i'd love to be a writer one day.

Interactive Environment

To interact with PersonaGPT, run interact.py --mode 0 to manually enter responses and see how the bot responds. You will first be prompted to enter a set of persona facts for your partner and then engage in a short conversation.

Use -turns or --num_turns to adjust the length of conversation (default = 8). To adjust the decoding parameters of PersonaGPT, use --help to bring up available settings to tune. For example, --top_k (default = 10) controls the number of candidate tokens at each decoding step, and --top_p controls the nucleus sampling. See how to generate text from Huggingface for nuances of the GPT decoding process.

To engage in controlled response generation, run interact.py --mode 1. At each turn, you will be prompted to select from a set of topics from which to steer the conversation toward. The output response by PersonaGPT may not always steer the conversation to the topic of interest, depending on the dialog history up to the current turn.


Training

Below are instructions to reconstruct the PersonaGPT from "scratch" (i.e., from pretrained DialoGPT or GPT-2, either of which are feasible as starting pre-trained models).

Requirements:

  • Python 3.6+
  • Pytorch (GPU preferred)
  • transformers
  • dotenv
  • tqdm
  • (optional) apex for fp16 training It is highly recommended that the pytorch and transformers packages are installed under a virtual environment.

After cloning this repository, follow the directions below to set up the training environment.

Instructions:

  1. Go to the .env file and set the save_path to your desired local repository to store model, scheduler and optimizer checkpoints. Point data_path to the ~/data folder of the cloned repository. The .env file also contains the hyperparameter configurations:
epochs = 3
learn_rate = 5e-5
gradient_accumulation_steps = 64
batch_size = 1
weight_decay = 0.0
logging_steps = 10
save_steps = 250

Replace epochs, batch_size, gradient_accumulation_steps and learn_rate with the desired hyperparameters of choice. Please use batch_size = 1 and change gradient accumulation steps to adjust the training batch size. This current repo version does not support parallel batching at the moment (TODO).

  1. Run preprocess_dataset.py to preprocess ~/data/train_both_original_no_cands.txt and ~/data/valid_both_original_no_cands.txt. The original .txt files are obtained from the ConvAI2 Challenge, which may no longer be available since the ConvAI3 challenge has taken place. The ConvAI2 challenge data uses the Persona-Chat dataset which is what is provided under the ~/data folder.

  2. Run train.py to train the PersonaGPT model. Results (e.g., pretrain_loss, persona_loss, ctrl_loss) will be saved under [save_path]/samples/. Model checkpoints are saved under [save_path]/checkpoint/model.

Currently there are 2 training loops, pretrain() and train_loop(). pretrain() first trains model on the Persona-Chat dataset and saves the performance under pretrain_stats. train_loop() then fine-tunes the model on active learning data, which examples of using action codes (e.g., "talk about hobbies", "ask about pets") to do controlled response generation. The pretrained model can be used as as stand-alone dialog model for personalized dialog generation without fine-tuning on the actively learned actions.

  • pretrain_loss: tracks the training loss on Persona-Chat dataset during pretrain().
  • persona_loss: tracks the training loss on Persona-Chat during train_loop().
  • ctrl_loss: tracks the training loss on actively learned action codes during train_loop().

Active Learning

Currently, there are 11 possible turn-level goals that can be used for controlled response generation.

Turn-level Goals
1. ask about family. 4. talk about traveling. 7. talk about music.
2. ask about pets. 5. ask about age and gender. 8. talk about food.
3. talk about work. 6. talk about hobbies. 9. talk about movies.
10. talk about politics. 11. ask about marital status. -

These turn-level goals are handcrafted based on the personachat dataset to cover most of the conversational directions at the turn-level.

To actively learn new turn-level goals, use the convogym repo.


Evaluation

After training, an evaluation loop will run and print out a set of scores saved under eval_stats. Below is a comparison of PersonaGPT vs. other baselines on the Persona-Chat dataset using automatic evaluation metrics. Your results should look something like:

Model Perplexity F1 Score
Seq2seq Baseline [3] 29.8 16.2
Wolf et al. [5] 16.3 19.5
GPT-2 baseline 99.5 5.8
DialoGPT baseline 56.6 12.6
DialoGPT finetuned 11.4 22.7
PersonaGPT 10.2 43.4

Cite Us

Our full paper is now up on arXiv.

@misc{tang2021persona,
      title={Persona Authentication through Generative Dialogue}, 
      author={Fengyi Tang and Lifan Zeng and Fei Wang and Jiayu Zhou},
      year={2021},
      eprint={2110.12949},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

References

  1. Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI Blog 1.8 (2019): 9.

  2. Zhang, Yizhe, et al. "Dialogpt: Large-scale generative pre-training for conversational response generation." arXiv preprint arXiv:1911.00536 (2019).

  3. Zhang, Saizheng, et al. "Personalizing dialogue agents: I have a dog, do you have pets too?." arXiv preprint arXiv:1801.07243 (2018).

  4. Dinan et al., "The Second Conversational Intelligence Challenge (ConvAI2)." arXiv preprint arXiv:1902.00098 (2019).

  5. Thomas Wolf et al. "Transfertransfo: A transfer learning approach for neural network based conversational agents." arXiv preprint328arXiv:1901.08149, 2019

Owner
ILLIDAN Lab
Intelligent Data Analytics Lab @ MSU : Creating Large-Scale Machine Learning Algorithms for Big Data Analytics
ILLIDAN Lab
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight).

Curriculum by Smoothing (NeurIPS 2020) The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight). For any questions reg

PAIR Lab 36 Nov 23, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023