This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

Related tags

Deep LearningCEDR
Overview

CEDR

This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper:

"Contrastive Embedding Distribution Refinement and Entropy-Aware Attention for 3D Point Cloud Classification"

Updates

  • 03/01/2022 The paper is currently under review, and the codes will be released in the future.
  • 06/01/2022 codes for both model.py and main.py are available now.
  • 10/01/2022 Update a pre-trained model (OA: 82.90%, mAcc: 80.60%) on ScanObjectNN via google drive.
  • 10/01/2022 Pre-trained model (OA: 93.10%, mAcc: 91.10%) on ModelNet40 is available at google drive.

Network Architecture

image

Implementation Platforms

  • Python 3.6
  • Pytorch 0.4.0 with Cuda 9.1
  • Higher Python/Pytorch/Cuda versions should also be compatible

ModelNet40 Experiment

Test the pre-trained model:

  • download ModelNet40, unzip and move modelnet40_ply_hdf5_2048 folder to ./data

  • put the pre-trained model under ./checkpoints/modelnet

  • then run (more settings can be modified in main.py):

python main.py --exp_name=gbnet_modelnet40_eval --model=gbnet --dataset=modelnet40 --eval=True --model_path=checkpoints/modelnet/gbnet_modelnet40.t7

ScanObjectNN Experiment

Test the pre-trained model:

  • download ScanObjectNN, and extract both training_objectdataset_augmentedrot_scale75.h5 and test_objectdataset_augmentedrot_scale75.h5 files to ./data
  • put the pre-trained model under ./checkpoints/gbnet_scanobjectnn
  • then run (more settings can be modified in main.py):
python main.py --exp_name=gbnet_scanobjectnn_eval --model=gbnet --dataset=ScanObjectNN --eval=True --model_path=checkpoints/gbnet_scanobjectnn/gbnet_scanobjectnn.t7

Pre-trained Models

  • Python 3.6, Pytorch 0.4.0, Cuda 9.1
  • 8 GeForce RTX 2080Ti GPUs
  • using default training settings as in main.py
Model Dataset #Points Data
Augmentation
Performance
on Test Set
Download
Link
PointNet++ ModelNet40 1024 random scaling
and translation
overall accuracy: 93.10%
average class accuracy: 91.10%
google drive
GBNet ScanObjectNN 1024 random scaling
and translation
overall accuracy: 82.90%
average class accuracy: 80.60%
google drive

Acknowledgement

The code is built on GBNet. We thank the authors for sharing the codes. We also thank the Big Data Center of Southeast University for providing the facility support on the numerical calculations in this paper.

Owner
phoenix
phoenix
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Yada Martins Tisan 3 Oct 31, 2021
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022