PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

Overview

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering

Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Hariharan2

1 The University of Texas at Austin, 2 Cornell University

[paper] [supp] [project page]

This repository is the official implementation of PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering, CVPR 2021.

Contact: Jang Hyun Cho [email protected].

Please feel free to reach out for any questions or discussions!

Setup

Setting up for this project involves installing dependencies and preparing the datasets.

Installing dependencies

To install all the dependencies, please run the following:

conda env create -f env.yml

Preparing Dataset

Please download the trainset and the validset of COCO dataset as well as the annotations. Place the dataset as following:

/your/dataset/directory/
      └── coco/
            ├── images/
            │     ├── train2017/
            │     │       ├── xxxxxxxxx.jpg
            │     │       └── ...
            │     └── val2017/
            │             ├── xxxxxxxxx.jpg
            │             └── ...
            └── annotations/
                  ├── COCO_2017_train.json
                  └── COCO_2017_val.json

Then, create a symbolic link as following:

cd PiCIE
ln -s /your/dataset/directory/ datasets 

Similarly, setup a symbolic link for the save directory as following:

ln -s /your/save/directory/ results

Finally, move curated folder to datasets/coco/:

mv curated datasets/coco/

This will setup the dataset that contains the same set of images with IIC.

Running PiCIE

Below are training and testing commands to train PiCIE.

Training

Below line will run the training code with default setting in the background.

nohup ./sh_files/train_picie.sh > logs/picie_train.out & 

Below line will run the testing code with default setting in the background.

Testing

nohup ./sh_files/test_picie.sh > logs/picie_test.out &

Pretrained Models (To be updated soon)

We have pretrained PiCIE weights.

Method Dataset Pre-trained weight Train log
PiCIE COCO weight log
PiCIE Cityscapes weight log
MDC COCO weight log
MDC Cityscapes weight log

Visualization (To be updated soon)

We prepared a jupyter notebook for visualization.

Citation

If you find PiCIE useful in your research, please consider citing:

@inproceedings{Cho2021PiCIE,
  title = {PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering},
  author = {Jang Hyun Cho and  Utkarsh Mall and  Kavita Bala and  Bharath Hariharan},
  year = {2021},
  booktitle = {CVPR}
}

Acknowledgements

We thank Facebook AI Research for the open-soource library Faiss. Also, our implementation largely borrows from DeepCluster and DeeperCluster for clustering with Faiss.

TODO's

  • Dependency & dataset setup.
  • Clear up and add complete train & test codes.
  • Baseline MDC code.
  • Weights and logs.
  • Make visualization notebook easier to use + better colors.
Owner
Jang Hyun Cho
PhD student at UT Austin
Jang Hyun Cho
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
TabNet for fastai

TabNet for fastai This is an adaptation of TabNet (Attention-based network for tabular data) for fastai (=2.0) library. The original paper https://ar

Mikhail Grankin 116 Oct 21, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022