we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Related tags

Deep LearningFARNet
Overview

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection

Overview

Localization of anatomical landmarks is essential for clinical diagnosis, treatment planning, and research. In this paper, we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks. To alleviate the problem of limited training data in the medical domain, our network adopts a CNN pre-trained on natural images as the backbone network and several popular networks have been compared. Our FARNet also includes a multi-scale feature aggregation module for multiscale feature fusion and a feature refinement module for high-resolution heatmap regression. Coarse-to-fine supervisions are applied to the two modules to facilitate the endto-end training. We further propose a novel loss function named Exponential Weighted Center loss for more accurate heatmap regression, which focuses on the losses from the pixels near landmarks and suppresses the ones from far away. Our network has been evaluated on three publicly available anatomical landmark detection datasets, including cephalometric radiographs, hand radiographs, and spine radiographs, and achieves state-of-art performances on all three datasets.

The architecture of the feature aggregation and refinement network (FARNet). FARNet includes a backbone network (in the pink dashed box), a multi-scale feature aggregation (MSFA) module (in the blue dashed box) and a feature refinement (FR) module (in the brown dashed box). We also give the feature level labels {L0, L1, L2, L3, L4, L5} at the left side of the figure, and all feature maps at the same horizontal level have the same spatial resolution.

Data

In this paper, we evaluate our landmark detection network on three public benchmark data sets, a cephalometric X-rays dataset [1], a hand X-rays dataset [2] and a Spinal AnteriorPosterior (AP) X-rays dataset [3].

How to use

Dependencies

This tutorial depends on the following libraries:

  • pytorch = 1.0.1
  • numpy = 1.18.5
  • python >= 3.6
  • xlwt

config.py

You should set the image path in config by yourself

Run main.py

Run main.py to train the model and test its performance

Some results

 Illustration of landmark detection results by our proposed method on three public datasets. The first row is the task of cephalometric landmark detetcion(19 landmarks), the second row is the task of hand radiographs landmark detection(37 landmarks) and the last row is the task of spinal anterior-posterior x-ray landmark detection(68 landmarks). The red points denote our detected landmarks via our framework, while blue points represent the ground-truth landmarks.

Reference

[1] C.-W. Wang, C.-T. Huang, J.-H. Lee, C.-H. Li, S.-W. Chang, M.-J.Siao, T.-M. Lai, B. Ibragimov, T. Vrtovec, O. Ronneberger, et al., “A benchmark for comparison of dental radiography analysis algorithms,” Medical image analysis, vol. 31, pp. 63–76, 2016.
[2] C. Payer, D. ˇStern, H. Bischof, and M. Urschler, “Integrating spatial configuration into heatmap regression based cnns for landmark localization,” Medical Image Analysis, vol. 54, pp. 207–219, 2019.
[3] H. Wu, C. Bailey, P. Rasoulinejad, and S. Li, “Automatic landmark estimation for adolescent idiopathic scoliosis assessment using boostnet,” in International Conference on Medical Image Computing and ComputerAssisted Intervention, 2017.

Owner
aoyueyuan
aoyueyuan
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
A library of scripts that interact with the PythonTurtle module to create games, drawings, and more

TurtleLib TurtleLib is a library of scripts that interact with the PythonTurtle module to create games, drawings, and more! Using the Scripts Copy or

1 Jan 15, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022