Sleep staging from ECG, assisted with EEG

Overview

Sleep_Staging_Knowledge Distillation

This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep staging model. Knowledge distillation is incorporated here by softmax distillation and another approach by Attention transfer based feature training. The combination of both is the proposed model.

The code implementation is done with Pytorch-lightning framework. Dependencies can be found in requirements.txt

RESEARCH

DATASET

Montreal Archive of Sleep Studies (MASS) - Complete 200 subject data used.

  • SS1 and SS3 subsets follow AASM guidelines
  • SS2, SS4, SS5 subsets follow R_K guidelines

KNOWLEDGE DISTILLATION FRAMEWORK

Knowledge distillation framework using minor modifications in U-Time as base model.

Improvement in bottleneck features from ECG_Base model to KD_model as a result of Knowledge distillation compared to EEG_base model features.

Case 1 : KD_model predicting correctly, ECG_Base predicting incorrectly

Case 2 : KD_model predicting incorrectly, ECG_Base predicting correctly

Run Training

Run train.py from 3-class or 4-class directories

To train baseline models

  python train.py --model_type <"base model type"> --model_ckpt_name <"ckpt name">

To run Knowledge Distillation

  • Feature Training
  python train.py --model_type "feat_train" --model_ckpt_name <"ckpt name"> --eeg_baseline_path <"eeg base ckpt path">
  • Feat_Temp (AT+SD+CL)
  python train.py --model_type "Feat_Temp" --model_ckpt_name <"ckpt name"> --feat_path <"path to feature trained ckpt">
  • Feat_WCE (AT+CL)
  python train.py --model_type "feat_wce" --model_ckpt_name <"ckpt name"> --feat_path <"path to feature trained ckpt">
  • KD-Temp (SD+CL)
  python train.py --model_type "kd_temp" --model_ckpt_name <"ckpt name"> --eeg_baseline_path <"eeg base ckpt path">

Run Testing

Run test.py from 3-class or 4-class directories

To test from checkpoints

  python test.py --model_type <"model type"> --test_ckpt <"Path to checkpoint>

Other arguments can be used for training and testing as per requirements

Reproducing experiments

Checkpoints to reproduce the test results can be found in this link

Directory Map

Dataset Spliting:

Splits Data in train-val-test for 4-class and 3-class cases (AASM and R_K both)

├─ Dataset_split
   ├── Data_split_3class_AllData30s_R_K.py
   ├── Data_split_3class_AllData_AASM.py
   ├── Data_split_AllData_30s_R_K.py
   └── Data_split_All_Data_AASM.py

3 Class Classification:

Run train.py with neccessary arguments for training 3-class sleep staging

├── 3_class
│   ├── datasets
│   │   ├── __init__.py
│   │   └── mass.py
│   │   
│   ├── models
│   │   ├── __init__.py
│   │   ├── ecg_base.py
│   │   ├── eeg_base.py
│   │   ├── FEAT_TEMP.py
│   │   ├── FEAT_TRAINING.py
│   │   ├── FEAT_WCE.py
│   │   └── KD_TEMP.py
│   │   
│   ├── test.py
│   ├── train.py
│   └── utils
│       ├── __init__.py
│       ├── arg_utils.py
│       ├── callback_utils.py
│       ├── dataset_utils.py
│       └── model_utils.py

4 Class Classification:

Run train.py with neccessary arguments for training 4-class sleep staging

├── 4_class
│   ├── datasets
│   │   ├── __init__.py
│   │   └── mass.py
│   │
│   ├── models
│   │   ├── __init__.py
│   │   ├── ecg_base.py
│   │   ├── eeg_base.py
│   │   ├── FEAT_TEMP.py
│   │   ├── FEAT_TRAINING.py
│   │   ├── FEAT_WCE.py
│   │   └── KD_TEMP.py
│   │   
│   ├── test.py
│   ├── train.py
│   └── utils
│       ├── __init__.py
│       ├── arg_utils.py
│       ├── callback_utils.py
│       ├── dataset_utils.py
│       └── model_utils.py

Acknowledgements

Authors

Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
Progressive Image Deraining Networks: A Better and Simpler Baseline

Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin

190 Dec 01, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022