Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Overview

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics

@WIFS2021 (Montpellier, France)

Rony Abecidan, Vincent Itier, Jeremie Boulanger, Patrick Bas

Installation

To be able to reproduce our experiments and do your own ones, please follow our Installation Instructions

Architecture used

Domain Adaptation in action

  • Source : Half of images from the Splicing category of DEFACTO
  • Target : Other half of the images from the Splicing category of DEFACTO, compressed to JPEG with a quality factor of 5%

To have a quick idea of the adaptation impact on the training phase, we selected a batch of size 512 from the target and, we represented the evolution of the final embeddings distributions from this batch during the training according to the setups SrcOnly and Update($\sigma=8$) described in the paper. The training relative to the SrcOnly setup is on the left meanwhile the one relative to Update($\sigma=8$) is on the right.

Don't hesitate to click on the gif below to see it better !

  • As you can observe, in the SrcOnly setup, the forgery detector is more and more prone to false alarms, certainly because compressing images to QF5 results in creating artifacts in the high frequencies that can be misinterpreted by the model. However, it has no real difficulty to identify correctly the forged images.

  • In parallel, in the Update setup, the forgery detector is more informed and make less false alarms during the training.

Discrepancies with the first version of our article

Several modifications have been carried out since the writing of this paper in order to :

  • Generate databases as most clean as possible
  • Make our results as most reproducible as possible
  • Reduce effectively computation time and memory space

Considering that remark, you will not exactly retrieve the results we shared in the first version of the paper with the implementation proposed here. Nevertheless, the results we got from this new implementation are comparable with the previous ones and you should obtain similar results as the ones shared in this page.

For more information about the modifications we performed and the reasons behind, click here

Main references

@inproceedings{mandelli2020training,
  title={Training {CNNs} in Presence of {JPEG} Compression: Multimedia Forensics vs Computer Vision},
  author={Mandelli, Sara and Bonettini, Nicol{\`o} and Bestagini, Paolo and Tubaro, Stefano},
  booktitle={2020 IEEE International Workshop on Information Forensics and Security (WIFS)},
  pages={1--6},
  year={2020},
  organization={IEEE}
}

@inproceedings{bayar2016,
  title={A deep learning approach to universal image manipulation detection using a new convolutional layer},
  author={Bayar, Belhassen and Stamm, Matthew C},
  booktitle={Proceedings of the 4th ACM workshop on information hiding and multimedia security (IH\&MMSec)},
  pages={5--10},
  year={2016}
}

@inproceedings{long2015learning,
  title={Learning transferable features with deep adaptation networks},
  author={Long, M. and Cao, Y. and Wang, J. and Jordan, M.},
  booktitle={International Conference on Machine Learning},
  pages={97--105},
  year={2015},
  organization={PMLR}
}


@inproceedings{DEFACTODataset, 
	author = {Ga{\"e}l Mahfoudi and Badr Tajini and Florent Retraint and Fr{\'e}d{\'e}ric Morain-Nicolier and Jean Luc Dugelay and Marc Pic},
	title={{DEFACTO:} Image and Face Manipulation Dataset},
	booktitle={27th European Signal Processing Conference (EUSIPCO 2019)},
	year={2019}
}

Citing our paper

If you wish to refer to our paper, please use the following BibTeX entry

@inproceedings{abecidan:hal-03374780,
  TITLE = {{Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics}},
  AUTHOR = {Abecidan, Rony and Itier, Vincent and Boulanger, J{\'e}r{\'e}mie and Bas, Patrick},
  URL = {https://hal.archives-ouvertes.fr/hal-03374780},
  BOOKTITLE = {{WIFS 2021 : IEEE International Workshop on Information Forensics and Security}},
  ADDRESS = {Montpellier, France},
  PUBLISHER = {{IEEE}},
  YEAR = {2021},
  MONTH = Dec,
  PDF = {https://hal.archives-ouvertes.fr/hal-03374780/file/2021_wifs.pdf},
  HAL_ID = {hal-03374780}
}
Owner
Rony Abecidan
PhD Candidate @ Centrale Lille
Rony Abecidan
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets

Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl

Azavea 1.7k Dec 22, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022