MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Overview

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv)

This is a Pytorch implementation of our paper. We present Vision Permutator, a conceptually simple and data efficient MLP-like architecture for visual recognition. We show that our Vision Permutators are formidable competitors to convolutional neural networks (CNNs) and vision transformers.

We hope this work could encourage researchers to rethink the way of encoding spatial information and facilitate the development of MLP-like models.

Compare

Basic structure of the proposed Permute-MLP layer. The proposed Permute-MLP layer contains three branches that are responsible for encoding features along the height, width, and channel dimensions, respectively. The outputs from the three branches are then combined using element-wise addition, followed by a fully-connected layer for feature fusion.

Our code is based on the pytorch-image-models, Token Labeling, T2T-ViT

Comparison with Recent MLP-like Models

Model Parameters Throughput Image resolution Top 1 Acc. Download Logs
EAMLP-14 30M 711 img/s 224 78.9%
gMLP-S 20M - 224 79.6%
ResMLP-S24 30M 715 img/s 224 79.4%
ViP-Small/7 (ours) 25M 719 img/s 224 81.5% link
EAMLP-19 55M 464 img/s 224 79.4%
Mixer-B/16 59M - 224 78.5%
ViP-Medium/7 (ours) 55M 418 img/s 224 82.7% link
gMLP-B 73M - 224 81.6%
ResMLP-B24 116M 231 img/s 224 81.0%
ViP-Large/7 88M 298 img/s 224 83.2% link

The throughput is measured on a single machine with V100 GPU (32GB) with batch size set to 32.

Training ViP-Small/7 takes less than 30h on ImageNet for 300 epochs on a node with 8 A100 GPUs.

Requirements

torch>=1.4.0
torchvision>=0.5.0
pyyaml
timm==0.4.5
apex if you use 'apex amp'

data prepare: ImageNet with the following folder structure, you can extract imagenet by this script.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Validation

Replace DATA_DIR with your imagenet validation set path and MODEL_DIR with the checkpoint path

CUDA_VISIBLE_DEVICES=0 bash eval.sh /path/to/imagenet/val /path/to/checkpoint

Training

Command line for training on 8 GPUs (V100)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./distributed_train.sh 8 /path/to/imagenet --model vip_s7 -b 256 -j 8 --opt adamw --epochs 300 --sched cosine --apex-amp --img-size 224 --drop-path 0.1 --lr 2e-3 --weight-decay 0.05 --remode pixel --reprob 0.25 --aa rand-m9-mstd0.5-inc1 --smoothing 0.1 --mixup 0.8 --cutmix 1.0 --warmup-lr 1e-6 --warmup-epochs 20

Reference

You may want to cite:

@misc{hou2021vision,
    title={Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition},
    author={Qibin Hou and Zihang Jiang and Li Yuan and Ming-Ming Cheng and Shuicheng Yan and Jiashi Feng},
    year={2021},
    eprint={2106.12368},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

License

This repository is released under the MIT License as found in the LICENSE file. For commercial use, please contact with the authors.

Owner
Qibin (Andrew) Hou
Research fellow at NUS.
Qibin (Andrew) Hou
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Earthquake detection via fiber optic cables using deep learning

Earthquake detection via fiber optic cables using deep learning Author: Fantine Huot Getting started Update the submodules After cloning the repositor

Fantine 4 Nov 30, 2022
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022
PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

0 Mar 01, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022