Reproducing Results from A Hybrid Approach to Targeting Social Assistance

Overview
title author date output
Reproducing Results from A Hybrid Approach to Targeting Social Assistance
Lendie Follett and Heath Henderson
12/28/2021
html_document

Introduction

This repository contains the code and data required to reproduce the results found in "A Hybrid Approach to Targeting Social Assistance". Specifically, to run simulation studies that estimate out of sample error rates using the Hybrid, Hybrid-AI, Hybrid-EC, and Hybrid-DU models on data from Indonesia (Alatas et al. (2012)) and Burkina Faso (Hillebrecht et al. (2020)).

Requirements

To install the required R packages, run the following code in R:

install.packages(c("truncnorm", "mvtnorm", "LaplacesDemon", "MASS", "dplyr",
                   "ggplot2", "Rcpp", "reshape2", "caret", "parallel"))

Data

We use two sources of data containing community based rankings, survey information, and consumption/expenditure data. This data can be found in the following sub-directories:

list.files("Data/Burkina Faso/Cleaning/")
## [1] "cleaning.do"              "hillebrecht.csv"          "hillebrecht.dta"         
## [4] "hillebrecht(missing).csv" "hillebrecht(missing).dta" "variables.csv"
list.files("Data/Indonesia/Cleaning/")
##  [1] "alatas.csv"                               
##  [2] "alatas.dta"                               
##  [3] "alatas(missing).csv"                      
##  [4] "alatas(missing).dta"                      
##  [5] "cleaning.do"                              
##  [6] "FAO Dietary Diversity Guidelines 2011.pdf"
##  [7] "food.dta"                                 
##  [8] "notes.docx"                               
##  [9] "ranks.dta"                                
## [10] "variables.csv"                            
## [11] "xvars.dta"

The data files that will be called are "hillebrecht.csv" and "alatas.csv".

Reproduce

  1. Run run_simulations.R to reproduce error rate results and coefficient estimate results.
  • Indonesia Analysis/all_results.csv
  • Indonesia Analysis/all_coef.csv
  • Indonesia Analysis/coef_total_sample.csv
  • Indonesia Analysis/CB_beta_rank_CI_noelite.csv
  • Indonesia Analysis/CB_beta_rank_CI.csv
  • Burkina Faso Analysis/all_results.csv
  • Burkina Faso Analysis/all_coef.csv
  • Burkina Faso Analysis/coef_total_sample.csv
  • Burkina Faso Analysis/CB_beta_rank_CI_noelite.csv
  • Burkina Faso Analysis/CB_beta_rank_CI.csv

The above files can be used to generate plots found in the manuscript:

  1. Run Burkina Faso Analysis/make_plots.R to reproduce error rate plots and coefficient plots for the Burkina Faso data.
  • Burkina Faso Analysis/coef_score_EC_hillebrecht.pdf
  • Burkina Faso Analysis/coef_score_hillebrecht.pdf (Figure 1)
  • Burkina Faso Analysis/ER_hybrid_AI.pdf (Figure 7 a)
  • Burkina Faso Analysis/ER_hybrid_DU.pdf (Figure 8)
  • Burkina Faso Analysis/ER_hybrid.pdf (Figure 3 a)
  1. Run Indonesia Analysis/make_plots.R to reproduce error rate plots and coefficient plots for the Indonesia data.
  • Indonesia Analysis/coef_score_EC_hillebrecht.pdf (Figure 5)
  • Indonesia Analysis/coef_score_hillebrecht.pdf (Figure 2)
  • Indonesia Analysis/ER_hybrid_AI.pdf (Figure 7 b)
  • Indonesia Analysis/ER_hybrid_EC.pdf (Figure 6)
  • Indonesia Analysis/ER_hybrid.pdf (Figure 3 b)
  1. Run Burkina Faso Analysis/run_mcmc_weights.R to reproduce heterogeneous ranker results.
  • Burkina Faso Analysis/heter_weights_omega.pdf (Figure 4 a)
  • Burkina Faso Analysis/heter_weights_corr.pdf (Figure 4 b)

References

Alatas, V., Banerjee, A., Hanna, R., Olken, B., and Tobias, J. (2013).Targeting the poor: Evidence from a field experiment in Indonesia.Harvard Dataverse,https://doi.org/10.7910/DVN/M7SKQZ, V5.

Hillebrecht, M., Klonner, S., Pacere, N. A., and Souares, A. (2020b). Community-basedversus statistical targeting of anti-poverty programs: Evidence from Burkina Faso.Journalof African Economies, 29(3):271–305

Owner
Lendie Follett
Lendie Follett
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022