This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

Overview

1st place solution in CCF BDCI 2021 ULSEG challenge

This is the source code of the 1st place solution for ultrasound image angioma segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

[Challenge leaderboard πŸ† ]

1 Pipeline of our solution

Our solution includes data pre-processing, network training, ensemble inference and data post-processing.

drawing

Ultrasound images of hemangioma segmentation framework

1.1 Data pre-processing

To improve our performance on the leaderboard, 5-fold cross validation is used to evaluate the performance of our proposed method. In our opinion, it is necessary to keep the size distribution of tumor in the training and validation sets. We calculate the tumor area for each image and categorize the tumor size into classes: 1) less than 3200 pixels, 2) less than 7200 pixels and greater than 3200 pixels, and 3) greater than 7200 pixels. These two thresholds, 3200 pixels and 7200 pixels, are close to the tertiles. We divide images in each size grade group into 5 folds and combined different grades of single fold into new single fold. This strategy ensured that final 5 folds had similar size distribution.

drawing

Tumors of different sizes

1.2 Network training

Due to the small size of the training set, for this competition, we chose a lightweight network structure: Linknet with efficientnet-B6 encoder. Following methods are performed in data augmentation (DA): 1) horizontal flipping, 2) vertical flipping, 3) random cropping, 4) random affine transformation, 5) random scaling, 6) random translation, 7) random rotation, and 8) random shearing transformation. In addition, one of the following methods was randomly selected for enhanced data augmentation (EDA): 1) sharpening, 2) local distortion, 3) adjustment of contrast, 4) blurring (Gaussian, mean, median), 5) addition of Gaussian noise, and 6) erasing.

1.3 Ensemble inference

We ensemble five models (five folds) and do test time augmentation (TTA) for each model. TTA generally improves the generalization ability of the segmentation model. In our framework, the TTA includes vertical flipping, horizontal flipping, and rotation of 180 degrees for the segmentation task.

1.4 Data post-processing

We post-processe the obtained binary mask by removing small isolated points (RSIP) and edge median filtering (EMF) . The edge part of our predicted tumor is not smooth enough, which is not quite in line with the manual annotation of the physician, so we adopt a small trick, i.e., we do a median filtering specifically for the edge part, and the experimental results show that this can improve the accuracy of tumor segmentation.

2 Segmentation results on 2021 CCF BDCI dataset

We test our method on 2021 CCD BDCI dataset (215 for training and 107 for testing). The segmentation results of 5-fold CV based on "Linknet with efficientnet-B6 encoder" are as following:

fold Linknet Unet Att-Unet DeeplabV3+ Efficient-b5 Efficient-b6 Resnet-34 DA EDA TTA RSIP EMF Dice (%)
1 √ 85.06
1 √ √ 84.48
1 √ √ 84.72
1 √ √ 84.93
1 √ √ 86.52
1 √ √ 86.18
1 √ √ 86.91
1 √ √ √ 87.38
1 √ √ √ 88.36
1 √ √ √ √ 89.05
1 √ √ √ √ √ 89.20
1 √ √ √ √ √ √ 89.52
E √ √ √ √ √ √ 90.32

3 How to run this code?

Here, we split the whole process into 5 steps so that you can easily replicate our results or perform the whole pipeline on your private custom dataset.

  • step0, preparation of environment
  • step1, run the script preprocess.py to perform the preprocessing
  • step2, run the script train.py to train our model
  • step3, run the script inference.py to inference the test data.
  • step4, run the script postprocess.py to perform the preprocessing.

You should prepare your data in the format of 2021 CCF BDCI dataset, this is very simple, you only need to prepare: two folders store png format images and masks respectively. You can download them from [Homepage].

The complete file structure is as follows:

  |--- CCF-BDCI-2021-ULSEG-Rank1st
      |--- segmentation_models_pytorch_4TorchLessThan120
          |--- ...
          |--- ...
      |--- saved_model
          |--- pred
          |--- weights
      |--- best_model
          |--- best_model1.pth
          |--- ...
          |--- best_model5.pth
      |--- train_data
          |--- img
          |--- label
          |--- train.csv
      |--- test_data
          |--- img
          |--- predict
      |--- dataset.py
      |--- inference.py
      |--- losses.py
      |--- metrics.py
      |--- ploting.py
      |--- preprocess.py
      |--- postprocess.py
      |--- util.py
      |--- train.py
      |--- visualization.py
      |--- requirement.txt

3.1 Step0 preparation of environment

We have tested our code in following environment:

For installing these, run the following code:

pip install -r requirements.txt

3.2 Step1 preprocessing

In step1, you should run the script and train.csv can be generated under train_data fold:

python preprocess.py \
--image_path="./train_data/label" \
--csv_path="./train_data/train.csv"

3.3 Step2 training

With the csv file train.csv, you can directly perform K-fold cross validation (default is 5-fold), and the script uses a fixed random seed to ensure that the K-fold cv of each experiment is repeatable. Run the following code:

python train.py \
--input_channel=1 \
--output_class=1 \
--image_resolution=256 \
--epochs=100 \
--num_workers=2 \
--device=0 \
--batch_size=8 \
--backbone="efficientnet-b6" \
--network="Linknet" \
--initial_learning_rate=1e-7 \
--t_max=110 \
--folds=5 \
--k_th_fold=1 \
--fold_file_list="./train_data/train.csv" \
--train_dataset_path="./train_data/img" \
--train_gt_dataset_path="./train_data/label" \
--saved_model_path="./saved_model" \
--visualize_of_data_aug_path="./saved_model/pred" \
--weights_path="./saved_model/weights" \
--weights="./saved_model/weights/best_model.pth" 

By specifying the parameter k_th_fold from 1 to folds and running repeatedly, you can complete the training of all K folds. After each fold training, you need to copy the .pth file from the weights path to the best_model folder.

3.4 Step3 inference (test)

Before running the script, make sure that you have generated five models and saved them in the best_model folder. Run the following code:

python inference.py \
--input_channel=1 \
--output_class=1 \
--image_resolution=256 \
--device=0 \
--backbone="efficientnet-b6" \
--network="Linknet" \
--weights1="./saved_model/weights/best_model1.pth" \
--weights2="./saved_model/weights/best_model2.pth" \
--weights3="./saved_model/weights/best_model3.pth" \
--weights4="./saved_model/weights/best_model4.pth" \
--weights5="./saved_model/weights/best_model5.pth" \
--test_path="./test_data/img" \
--saved_path="./test_data/predict" 

The results of the model inference will be saved in the predict folder.

3.5 Step4 postprocessing

Run the following code:

python postprocess.py \
--image_path="./test_data/predict" \
--threshood=50 \
--kernel=20 

Alternatively, if you want to observe the overlap between the predicted result and the original image, we also provide a visualization script visualization.py. Modify the image path in the code and run the script directly.

drawing

Visualization of tumor margins

4 Acknowledgement

  • Thanks to the organizers of the 2021 CCF BDCI challenge.
  • Thanks to the 2020 MICCCAI TNSCUI TOP 1 for making the code public.
  • Thanks to qubvel, the author of smg and ttach, all network and TTA used in this code come from his implement.
Owner
Chenxu Peng
Data Science, Deep Learning
Chenxu Peng
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
Atomistic Line Graph Neural Network

Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use

National Institute of Standards and Technology 91 Dec 30, 2022
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

118 Dec 12, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE

Tengda Han 271 Jan 02, 2023
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in γ€ŠOpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021