Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Related tags

Deep LearningTP-Net
Overview

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul, Korea)

To download our paper, click here.

Introduction

This repository accompanies the paper "Flexible Networks for Learning Physical Dynamics of Deformable Objects", which is currenty under review for publication.
We release the code to train, test, and visualize the result of our model.
The implementation is based on python 3.6, tensorflow 2.3.0., CUDA 10.1, and cuDNN 7.6.1

How To Run

1. Configure Environment

pip install -r requirements.txt

2-1. Download Dataset
Download each dataset from the links below.

After downloading and unzipping each dataset, place each folder as below.

data/synthetic_dataset/preprocessed_data
data/real_world_dataset/preprocessed_data

2-2 (Alternative) Generating the entire Synthetic Dataset
Alternatively, you can generate the synthetic dataset from scratch by executing the following commands.
The entire process of generating the synthetic dataset takes a couple of hours and consumes approximately 12.43GB.

python3 box2d_simulator/simulator.py                     # generates raw point set data
python3 data/simulation/preprocess_code/preprocess.py    # preprocess data

3. Train
To train TP-Net with the parameters that we used for getting the best performance, execute the following command.
You can change the hyperparameters or other training options by changing config.py.

CUDA_VISIBLE_DEVICES=0 python3 train.py

4. Evaluate & Visualize
To evaluate the trained model on test cases, run

CUDA_VISIBLE_DEVICES=0 python3 ./evaluation/evaluate_synthetic.py --init_data_type=ordered
CUDA_VISIBLE_DEVICES=0 python3 ./evaluation/evaluate_real_world.py --init_data_type=unordered

To visualize the results, run

python3 ./evaluation/visualize_synthetic.py
python3 ./evaluation/visualize_real_world.py
Owner
Jinhyung Park
∙Research Intern at the Computer Graphics Laboratory at Yonsei University
Jinhyung Park
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023
📖 Deep Attentional Guided Image Filtering

📖 Deep Attentional Guided Image Filtering [Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji Harbin Institute of Technology,

9 Dec 23, 2022
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022