a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

Overview

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

1. Notes

This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" [https://arxiv.org/abs/2107.08430]
The repo is still under development

2. Environment

pytorch>=1.7.0, python>=3.6, Ubuntu/Windows, see more in 'requirements.txt'

cd /path/to/your/work
git clone https://github.com/zhangming8/yolox-pytorch.git
cd yolox-pytorch
download pre-train weights in Model Zoo to /path/to/your/work/weights

3. Object Detection

Model Zoo

All weights can be downloaded from GoogleDrive or BaiduDrive (code:bc72)

Model test size mAPval
0.5:0.95
mAPtest
0.5:0.95
Params
(M)
yolox-nano 416 25.4 25.7 0.91
yolox-tiny 416 33.1 33.2 5.06
yolox-s 640 39.3 39.6 9.0
yolox-m 640 46.2 46.4 25.3
yolox-l 640 49.5 50.0 54.2
yolox-x 640 50.5 51.1 99.1
yolox-x 800 51.2 51.9 99.1

mAP was reevaluated on COCO val2017 and test2017, and some results are slightly better than the official implement YOLOX. You can reproduce them by scripts in 'evaluate.sh'

Dataset

download COCO:
http://images.cocodataset.org/zips/train2017.zip
http://images.cocodataset.org/zips/val2017.zip
http://images.cocodataset.org/annotations/annotations_trainval2017.zip

unzip and put COCO dataset in following folders:
/path/to/dataset/annotations/instances_train2017.json
/path/to/dataset/annotations/instances_val2017.json
/path/to/dataset/images/train2017/*.jpg
/path/to/dataset/images/val2017/*.jpg

change opt.dataset_path = "/path/to/dataset" in 'config.py'

Train

See more example in 'train.sh'
a. Train from scratch:(backbone="CSPDarknet-s" means using yolox-s, and you can change it, eg: CSPDarknet-nano, tiny, s, m, l, x)
python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=True val_intervals=2 data_num_workers=6 batch_size=48

b. Finetune, download pre-trained weight on COCO and finetune on customer dataset:
python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=True val_intervals=2 data_num_workers=6 batch_size=48 load_model="../weights/yolox-s.pth"

c. Resume, you can use 'resume=True' when your training is accidentally stopped:
python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=True val_intervals=2 data_num_workers=6 batch_size=48 load_model="exp/coco_CSPDarknet-s_640x640/model_last.pth" resume=True

Some Tips:

a. You can also change params in 'train.sh'(these params will replace opt.xxx in config.py) and use 'nohup sh train.sh &' to train
b. Multi-gpu train: set opt.gpus = "3,5,6,7" in 'config.py' or set gpus="3,5,6,7" in 'train.sh'
c. If you want to close multi-size training, change opt.random_size = None in 'config.py' or set random_size=None in 'train.sh'
d. random_size = (14, 26) means: Randomly select an integer from interval (14,26) and multiply by 32 as the input size
e. Visualized log by tensorboard: 
    tensorboard --logdir exp/your_exp_id/logs_2021-08-xx-xx-xx and visit http://localhost:6006
   Your can also use the following shell scripts:
    (1) grep 'train epoch' exp/your_exp_id/logs_2021-08-xx-xx-xx/log.txt
    (2) grep 'val epoch' exp/your_exp_id/logs_2021-08-xx-xx-xx/log.txt

Evaluate

Module weights will be saved in './exp/your_exp_id/model_xx.pth'
change 'load_model'='weight/path/to/evaluate.pth' and backbone='backbone-type' in 'evaluate.sh'
sh evaluate.sh

Predict/Inference/Demo

a. Predict images, change img_dir and load_model
python predict.py gpus='0' backbone="CSPDarknet-s" vis_thresh=0.3 load_model="exp/coco_CSPDarknet-s_640x640/model_best.pth" img_dir='/path/to/dataset/images/val2017'

b. Predict video
python predict.py gpus='0' backbone="CSPDarknet-s" vis_thresh=0.3 load_model="exp/coco_CSPDarknet-s_640x640/model_best.pth" video_dir='/path/to/your/video.mp4'

You can also change params in 'predict.sh', and use 'sh predict.sh'

Train Customer Dataset(VOC format)

1. put your annotations(.xml) and images(.jpg) into:
    /path/to/voc_data/images/train2017/*.jpg  # train images
    /path/to/voc_data/images/train2017/*.xml  # train xml annotations
    /path/to/voc_data/images/val2017/*.jpg  # val images
    /path/to/voc_data/images/val2017/*.xml  # val xml annotations

2. change opt.label_name = ['your', 'dataset', 'label'] in 'config.py'
   change opt.dataset_path = '/path/to/voc_data' in 'config.py'

3. python tools/voc_to_coco.py
   Converted COCO format annotation will be saved into:
    /path/to/voc_data/annotations/instances_train2017.json
    /path/to/voc_data/annotations/instances_val2017.json

4. (Optional) you can visualize the converted annotations by:
    python tools/show_coco_anns.py
    Here is an analysis of the COCO annotation https://blog.csdn.net/u010397980/article/details/90341223?spm=1001.2014.3001.5501

5. run train.sh, evaluate.sh, predict.sh (are the same as COCO)

4. Multi/One-class Multi-object Tracking(MOT)

one-class/single-class MOT Dataset

DOING

Multi-class MOT Dataset

DOING

Train

DOING

Evaluate

DOING

Predict/Inference/Demo

DOING

5. Acknowledgement

https://github.com/Megvii-BaseDetection/YOLOX
https://github.com/PaddlePaddle/PaddleDetection
https://github.com/open-mmlab/mmdetection
https://github.com/xingyizhou/CenterNet
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
Vikrant Deshpande 1 Nov 17, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023