Music Generation using Neural Networks Streamlit App

Overview

Music_Gen_Streamlit

"Music Generation using Neural Networks" Streamlit App

TO DO:

  • Make a run_app.sh

  • Introduction [~5 min] (Sohaib)

    • Team Member names/intro (WS 2019/2020, course name)
    • Outline
      • Introduction
      • Data
      • Phase 1
      • Phase 2
      • Neural DJ
    • Literature review
      • Refer to the literature slides
  • Data Analysis [~10 min] (Shivaani)

    • General Info about data
      • Add charts and sources about data (Lakh and RedditPop)
    • DataProcessing Pipeline Graph (streamlit graph docs/ Abdallah's choice)
    • Raw MIDI data
      • Music21 intro and applications
      • show raw midi (without explanation, button to visualize raw midi (Sohaib))
    • Tokenized MIDI
      • Show Tokenized with variable length
      • Expand Tokens (musicautobot, go through section and see if its too explained)
    • Play MIDI (Sohaib)
      • Phase 1
        • Play original
        • Play extracted
      • Phase 2
        • Play sample (Lakh)
  • Add Model() (Abdallah)

    • Phase 1
      • Modeling (Hugging Face OpenAI GPT2)
      • Data
        • Only Piano (extracction process)
      • Tokenization problem
    • Phase 2
      • Modeling (Architecture, Transformer XL)
      • Data
        • Used piano, but then ran into problems
        • handle big files problem
      • musicautobot API for data
  • Add Prediction() (Code: Sohaib)

    • Overview of pred process
    • Play
      • Play original
      • Play predicted
    • Visualize
      • Note sheet original
      • Note sheet predicted
    • [?] Metrics
  • Technical Service/Deployment Pipeline (Code: Sohaib)

    • make a requirements.txt
    • Docker and heroku deployment
      • Make container
      • Check functionalities for each functional part of interface

Use Docker to run

make sure you have docker installed ./run_app.sh (this will take around 7-10 mins) then go to : localost:8501

RUN DEMO

https://neuralpiano.herokuapp.com/

Owner
Muhammad Sohaib Arshid
Muhammad Sohaib Arshid
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
Source code for paper: Knowledge Inheritance for Pre-trained Language Models

Knowledge-Inheritance Source code paper: Knowledge Inheritance for Pre-trained Language Models (preprint). The trained model parameters (in Fairseq fo

THUNLP 31 Nov 19, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
Securetar - A streaming wrapper around python tarfile and allow secure handling files and support encryption

Secure Tar Secure Tarfile library It's a streaming wrapper around python tarfile

Pascal Vizeli 2 Dec 09, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022