PyTorch implementation of SIFT descriptor

Overview

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can be used for descriptop-based learning shape of affine feature.

UPD 08/2019 : pytorch-sift is added to kornia and available by kornia.features.SIFTDescriptor

There are different implementations of the SIFT on the web. I tried to match Michal Perdoch implementation, which gives high quality features for image retrieval CVPR2009. However, on planar datasets, it is inferior to vlfeat implementation. The main difference is gaussian weighting window parameters, so I have made a vlfeat-like version too. MP version weights patch center much more (see image below, left) and additionally crops everything outside the circular region. Right is vlfeat version

Michal Perdoch kernel vlfeat kernel

descriptor_mp_mode = SIFTNet(patch_size = 65,
                        sigma_type= 'hesamp',
                        masktype='CircularGauss')

descriptor_vlfeat_mode = SIFTNet(patch_size = 65,
                        sigma_type= 'vlfeat',
                        masktype='Gauss')

Results:

hpatches mathing results

OPENCV-SIFT - mAP 
   Easy     Hard      Tough     mean
-------  -------  ---------  -------
0.47788  0.20997  0.0967711  0.26154

VLFeat-SIFT - mAP 
    Easy      Hard      Tough      mean
--------  --------  ---------  --------
0.466584  0.203966  0.0935743  0.254708

PYTORCH-SIFT-VLFEAT-65 - mAP 
    Easy      Hard      Tough      mean
--------  --------  ---------  --------
0.472563  0.202458  0.0910371  0.255353

NUMPY-SIFT-VLFEAT-65 - mAP 
    Easy      Hard      Tough      mean
--------  --------  ---------  --------
0.449431  0.197918  0.0905395  0.245963

PYTORCH-SIFT-MP-65 - mAP 
    Easy      Hard      Tough      mean
--------  --------  ---------  --------
0.430887  0.184834  0.0832707  0.232997

NUMPY-SIFT-MP-65 - mAP 
    Easy     Hard      Tough      mean
--------  -------  ---------  --------
0.417296  0.18114  0.0820582  0.226832


Speed:

  • 0.00246 s per 65x65 patch - numpy SIFT
  • 0.00028 s per 65x65 patch - C++ SIFT
  • 0.00074 s per 65x65 patch - CPU, 256 patches per batch
  • 0.00038 s per 65x65 patch - GPU (GM940, mobile), 256 patches per batch
  • 0.00038 s per 65x65 patch - GPU (GM940, mobile), 256 patches per batch

If you use this code for academic purposes, please cite the following paper:

@InProceedings{AffNet2018,
    title = {Repeatability Is Not Enough: Learning Affine Regions via Discriminability},
    author = {Dmytro Mishkin, Filip Radenovic, Jiri Matas},
    booktitle = {Proceedings of ECCV},
    year = 2018,
    month = sep
}

Owner
Dmytro Mishkin
Postdoc at CTU in Prague in computer Vision. Founder of Szkocka Research Group.
Dmytro Mishkin
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021