ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

Overview

ILVR + ADM

This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral).

This repository is heavily based on improved diffusion and guided diffusion. We use PyTorch-Resizer for resizing function.

Overview

ILVR is a learning-free method for controlling the generation of unconditional DDPMs. ILVR refines each generation step with low-frequency component of purturbed reference image. Our method enables various tasks (image translation, paint-to-image, editing with scribbles) with only a single model trained on a target dataset.

image

Download pre-trained models

Create a folder models/ and download model checkpoints into it. Here are the unconditional models trained on FFHQ and AFHQ-dog:

These models have seen 10M and 4M images respectively. You may also try with models from guided diffusion.

ILVR Sampling

First, set PYTHONPATH variable to point to the root of the repository.

export PYTHONPATH=$PYTHONPATH:$(pwd)

Then, place your input image into a folder ref_imgs/.

Run the ilvr_sample.py script. Specify the folder where you want to save the output in --save_dir.

Here, we provide flags for sampling from above models. Feel free to change --down_N and --range_t to adapt downsampling factor and conditioning range from the paper.

Refer to improved diffusion for --timestep_respacing flag.

python scripts/ilvr_sample.py  --attention_resolutions 16 --class_cond False --diffusion_steps 1000 --dropout 0.0 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 128 --num_head_channels 64 --num_res_blocks 1 --resblock_updown True --use_fp16 False --use_scale_shift_norm True --timestep_respacing 100 --model_path models/ffhq_10m.pt --base_samples ref_imgs/face --down_N 32 --range_t 20 --save_dir output

ILVR sampling is implemented in p_sample_loop_progressive of guided-diffusion/gaussian_diffusion.py

Results

These are samples generated with N=8 and 16:

a

b

These are cat-to-dog samples generated with N=32:

c

Note

This repo is re-implemention of our method on guided diffusion. Our initial implementation of the paper is based on denoising-diffusion-pytorch.

Owner
Jooyoung Choi
Deep Generative Models
Jooyoung Choi
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Kai Staats 149 Jan 09, 2023
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022