Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Overview

Permuton-induced Chinese Restaurant Process

animationMCMCepinions

Note: Currently only the Matlab version is available, but a Python version will be available soon!

This is a demo code for Bayesian nonparametric relational data analysis based on Permuton-induced Chinese Restaurant Process (NeurIPS, 2021). The key features are listed as follows:

  • Clustering based on rectangular partitioning: For an input matrix, the algorithm probabilistically searches for the row and column order and rectangular partitioning so that similar elements are clustered in each block as much as possible.
  • Infinite model complexity: There is no need to fix the suitable number of rectangle clusters in advance, which is a fundamental principle of Bayesian nonparametric machine learning.
  • Arbitrary rectangular partitioning: It can potentially obtain a posterior distribution on arbitrary rectangular partitioning with any numbers of rectangle blocks.
  • Empirically faster mixing of Markov chain Monte Carlo (MCMC) iterations: The method most closely related to this algorithm is the Baxter Permutation Process (NeurIPS, 2020). Typically, this algorithm seems to be able to mix MCMC faster than the Baxter permutation process empirically.

You will need a basic MATLAB installation with Statistics and Machine Learning Toolbox.

In a nutshell

  1. cd permuton-induced-crp
  2. run

Then, the MCMC evolution will appear like the gif animation at the top of this page. The following two items are particularly noteworthy.

  • Top center: Probabilistic rectangular partitioning of a sample matrix (irmdata\sampledata.mat ).
  • Bottom right: Posterior probability.

Interpretation of analysis results

model

The details of the visualization that will be drawn while running the MCMC iterations require additional explanation of our model. Please refer to the paper for more details. Our model, an extension of the Chinese Restaurant Process (CRP), consists of a generative probabilistic model as shown in the figure above (taken from the original paper). While the standard CRP achieves sequence clustering by the analogy of placing customers (data) on tables (clusters), our model additionally achieves array clustering by giving the random table coordinates on [0,1]x[0,1] drawn from the permuton. By viewing the table coordinates as a geometric representation of a permutation, we can use the permutation-to-rectangulation transformation to obtain a rectangular partition of the matrix.

  • Bottom center: Random coordinates of the CRP tables on [0,1]x[0,1]. The size of each table (circle) reflects the number of customers sitting at that table.
  • Top left: Diagonal rectangulation corresponding to the permutation represented by the table coordinates.
  • Bottom left: Generic rectangulation corresponding to the permutation represented by the table coordinates.

Details of usage

Given an input relational matrix, the Permuton-induced Chinese Restaurant Process can be fitted to it by a MCMC inference algorithm as follows:

[RowTable, ColumnTable, TableCoordinates, nesw] = test_MCMC_PCRP(X);

or

[RowTable, ColumnTable, TableCoordinates, nesw] = test_MCMC_PCRP(X, opt);

  • X: An M by N input observation matrix. Each element must be natural numbers.
  • opt.maxiter: Maximum number of MCMC iterations.
  • opt.missingRatio: Ratio of test/(training+test) for prediction performance evaluation based on perplexity.

Reference

  1. M. Nakano, Yasuhiro Fujiwara, A. Kimura, T. Yamada, and N. Ueda, 'Permuton-induced Chinese Restaurant Process,' Advances in Neural Information Processing Systems 34 (NeurIPS 2021).

    @inproceedings{Nakano2021,
     author = {Nakano, Masahiro and Fujiwara, Yasuhiro and Kimura, Akisato and Yamada, Takeshi and Ueda, Naonori},
     booktitle = {Advances in Neural Information Processing Systems},
     pages = {},
     publisher = {Curran Associates, Inc.},
     title = {Permuton-induced Chinese Restaurant Process},
     url = {},
     volume = {34},
     year = {2021}
    }
    
Owner
NTT Communication Science Laboratories
NTT Communication Science Laboratories
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

AdaOPS An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with th

9 Oct 05, 2022
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages"

Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data

Ayush Daksh 12 Dec 01, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022