Convert scikit-learn models to PyTorch modules

Related tags

Deep Learningsk2torch
Overview

sk2torch

sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript.

Problems solved by this project:

  1. scikit-learn cannot perform inference on a GPU. Models like SVMs have a lot to gain from fast GPU primitives, and converting the models to PyTorch gives immediate access to these primitives.
  2. While scikit-learn supports serialization through pickle, saved models are not reproducible across versions of the library. On the other hand, TorchScript provides a convenient, safe way to save a model with its corresponding implementation. The resulting models can be loaded anywhere that PyTorch is installed, even without importing sk2torch.
  3. While certain models like SVMs and linear classifiers are theoretically end-to-end differentiable, scikit-learn provides no mechanism to compute gradients through trained models. PyTorch provides this functionality mostly for free.

See Usage for a high-level example of using the library. See How it works to see which modules are supported.

For fun, here's a vector field produced by differentiating the probability predictions of a two-class SVM (produced by this script):

A vector field quiver plot with two modes

Usage

First, train a model with scikit-learn as usual:

from sklearn.linear_model import SGDClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

x, y = create_some_dataset()
model = Pipeline([
    ("center", StandardScaler(with_std=False)),
    ("classify", SGDClassifier()),
])
model.fit(x, y)

Then call sk2torch.wrap on the model to create a PyTorch equivalent:

import sk2torch
import torch

torch_model = sk2torch.wrap(model)
print(torch_model.predict(torch.tensor([[1., 2., 3.]]).double()))

You can save a model with TorchScript:

import torch.jit

torch.jit.script(torch_model).save("path.pt")

# ... sk2torch need not be installed to load the model.
loaded_model = torch.jit.load("path.pt")

For a full example of training a model and using its PyTorch translation, see examples/svm_vector_field.py.

How it works

sk2torch contains PyTorch re-implementations of supported scikit-learn models. For a supported estimator X, a class TorchX in sk2torch will be able to read the attributes of X and convert them to torch.Tensor or simple Python types. TorchX subclasses torch.nn.Module and has a method for each inference API of X (e.g. predict, decision_function, etc.).

Which modules are supported? The easiest way to get an up-to-date list is via the supported_classes() function, which returns all wrap()able scikit-learn classes:

>>> import sk2torch
>>> sk2torch.supported_classes()
[<class 'sklearn.tree._classes.DecisionTreeClassifier'>, <class 'sklearn.tree._classes.DecisionTreeRegressor'>, <class 'sklearn.dummy.DummyClassifier'>, <class 'sklearn.ensemble._gb.GradientBoostingClassifier'>, <class 'sklearn.preprocessing._label.LabelBinarizer'>, <class 'sklearn.svm._classes.LinearSVC'>, <class 'sklearn.svm._classes.LinearSVR'>, <class 'sklearn.neural_network._multilayer_perceptron.MLPClassifier'>, <class 'sklearn.kernel_approximation.Nystroem'>, <class 'sklearn.pipeline.Pipeline'>, <class 'sklearn.linear_model._stochastic_gradient.SGDClassifier'>, <class 'sklearn.preprocessing._data.StandardScaler'>, <class 'sklearn.svm._classes.SVC'>, <class 'sklearn.svm._classes.NuSVC'>, <class 'sklearn.svm._classes.SVR'>, <class 'sklearn.svm._classes.NuSVR'>, <class 'sklearn.compose._target.TransformedTargetRegressor'>]

Comparison to sklearn-onnx

sklearn-onnx is an open source package for converting trained scikit-learn models into ONNX. Like sk2torch, sklearn-onnx re-implements inference functions for various models, meaning that it can also provide serialization and GPU acceleration for supported modules.

Naturally, neither library will support modules that aren't manually ported. As a result, the two libraries support different subsets of all available models/methods. For example, sk2torch supports the SVC probability prediction methods predict_proba and predict_log_prob, whereas sklearn-onnx does not.

While sklearn-onnx exports models to ONNX, sk2torch exports models to Python objects with familiar method names that can be fine-tuned, backpropagated through, and serialized in a user-friendly way. PyTorch is strictly more general than ONNX, since PyTorch models can be converted to ONNX if desired.

Owner
Alex Nichol
Web developer, math geek, and AI enthusiast.
Alex Nichol
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023
To SMOTE, or not to SMOTE?

To SMOTE, or not to SMOTE? This package includes the code required to repeat the experiments in the paper and to analyze the results. To SMOTE, or not

Amazon Web Services 1 Jan 03, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022