Code for Temporally Abstract Partial Models

Overview

Code for Temporally Abstract Partial Models

Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetarpal, Ahmed, Comanici and Precup, 2021 that is to be published at NeurIPS 2021.

Installation

  1. Clone the deepmind-research repository and cd into this directory:
git clone https://github.com/deepmind/affordances_option_models.git
  1. Now install the requirements to your system pip install -r ./requirements.txt. It is recommended to use a virtualenv to isolate dependencies.

For example:

git clone https://github.com/deepmind/affordances_option_models.git

python3 -m virtualenv affordances
source affordances/bin/activate

pip install -r affordances_option_models/requirements.txt

Usage

  1. The first step of the experiment is to build, train and save the low level options: python3 -m affordances_option_models.lp_learn_options --save_path ./options which will save the option policies into ./options/args/.... The low level options are trained by creating a reward matrix for the 75 options (see option_utils.check_option_termination) and then running value iteration.
  2. The next step is to learn the option models, policy over options and affordance models all online: python3 -m affordances_option_models.lp_learn_model_from_options --path_to_options=./options/gamma0.99/max_iterations1000/options/. See Arguments below to see how to select --affordances_name.

Arguments

  1. The default arguments for lp_learn_options.py will produce a reasonable set of option policies.
  2. For lp_learn_model_from_options.py use the argument --affordances_name to switch between the affordance that will be used for model learning. For the heuristic affordances (everything, only_pickup_drop and only_relevant_pickup_drop) the model learned will be evaluated via value iteration (i.e. planning) with every other affordance type. For the learned affordances, only learned affordances will be used in value iteration.

Experiments in Section 5.1

To reproduce the experiments with heuristics use the command

python3 -m affordances_option_models.lp_learn_model_from_options  \
--num_rollout_nodes=1 --total_steps=50000000 \
--seed=0 --affordances_name=everything

and run this command for every combination of the arguments:

  • --seed=: 0, 1, 2, 3
  • --affordances_name=: everything, only_pickup_drop, only_relevant_pickup_drop.

Experiments in Section 5.2

To reproduce the experiments with learned affordances use the command

python3 -m affordances_option_models.lp_learn_model_from_options  \
--num_rollout_nodes=1 --total_steps=50000000 --affordances_name=learned \
--seed=0 --affordances_threshold=0.0

and run this command for every combination of the arguments:

  • --seed=: 0, 1, 2, 3
  • --affordances_threshold=: 0.0, 0.1, 0.25, 0.5, 0.75.

Citation

If you use this codebase in your research, please cite the paper:

@misc{khetarpal2021temporally,
      title={Temporally Abstract Partial Models},
      author={Khimya Khetarpal and Zafarali Ahmed and Gheorghe Comanici and Doina Precup},
      year={2021},
      eprint={2108.03213},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Disclaimer

This is not an official Google product.

Owner
DeepMind
DeepMind
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
Code for all the Advent of Code'21 challenges mostly written in python

Advent of Code 21 Code for all the Advent of Code'21 challenges mostly written in python. They are not necessarily the best or fastest solutions but j

4 May 26, 2022
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022