The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

Overview

PlantStereo

This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Paper

PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction[preprint]

Qingyu Wang, Baojian Ma, Wei Liu, Mingzhao Lou, Mingchuan Zhou*, Huanyu Jiang and Yibin Ying

College of Biosystems Engineering and Food Science, Zhejiang University.

Example and Overview

We give an example of our dataset, including spinach, tomato, pepper and pumpkin.

The data size and the resolution of the images are listed as follows:

Subset Train Validation Test All Resolution
Spinach 160 40 100 300 1046×606
Tomato 80 20 50 150 1040×603
Pepper 150 30 32 212 1024×571
Pumpkin 80 20 50 150 1024×571
All 470 110 232 812

Analysis

We evaluated the disparity distribution of different stereo matching datasets.

Format

The data was organized as the following format, where the sub-pixel level disparity images are saved as .tiff format, and the pixel level disparity images are saved as .png format.

PlantStereo

├── PlantStereo2021

│          ├── tomato

│          │          ├── training

│          │          │         ├── left_view

│          │          │          │         ├── 000000.png

│          │          │          │         ├── 000001.png

│          │          │          │         ├── ......

│          │          │          ├── right_view

│          │          │          │         ├── ......

│          │          │          ├── disp

│          │          │          │         ├── ......

│          │          │          ├── disp_high_acc

│          │          │          │         ├── 000000.tiff

│          │          │          │         ├── ......

│          │          ├── testing

│          │          │          ├── left_view

│          │          │          ├── right_view

│          │          │          ├── disp

│          │          │          ├── disp_high_acc

│          ├── spinach

│          ├── ......

Download

You can use the following links to download out PlantStereo dataset.

Baidu Netdisk link
Google Drive link

Usage

  • sample.py

To construct the dataset, you can run the code in sample.py in your terminal:

conda activate <your_anaconda_virtual_environment>
python sample.py --num 0

We can registrate the image and transformate the coordinate through function mech_zed_alignment():

def mech_zed_alignment(depth, mech_height, mech_width, zed_height, zed_width):
    ground_truth = np.zeros(shape=(zed_height, zed_width), dtype=float)
    for v in range(0, mech_height):
        for u in range(0, mech_width):
            i_mech = np.array([[u], [v], [1]], dtype=float)  # 3*1
            p_i_mech = np.dot(np.linalg.inv(K_MECH), i_mech * depth[v, u])  # 3*1
            p_i_zed = np.dot(R_MECH_ZED, p_i_mech) + T_MECH_ZED  # 3*1
            i_zed = np.dot(K_ZED_LEFT, p_i_zed) * (1 / p_i_zed[2])  # 3*1
            disparity = ZED_BASELINE * ZED_FOCAL_LENGTH * 1000 / p_i_zed[2]
            u_zed = i_zed[0]
            v_zed = i_zed[1]
            coor_u_zed = round(u_zed[0])
            coor_v_zed = round(v_zed[0])
            if coor_u_zed < zed_width and coor_v_zed < zed_height:
                ground_truth[coor_v_zed][coor_u_zed] = disparity
    return ground_truth
  • epipole_rectification.py

    After collecting the left, right and disparity images throuth sample.py, we can perform epipole rectification on left and right images through epipole_rectification.py:

    python epipole_rectification.py

Citation

If you use our PlantStereo dataset in your research, please cite this publication:

@misc{PlantStereo,
    title={PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction},
    author={Qingyu Wang, Baojian Ma, Wei Liu, Mingzhao Lou, Mingchuan Zhou, Huanyu Jiang and Yibin Ying},
    howpublished = {\url{https://github.com/wangqingyu985/PlantStereo}},
    year={2021}
}

Acknowledgements

This project is mainly based on:

zed-python-api

mecheye_python_interface

Contact

If you have any questions, please do not hesitate to contact us through E-mail or issue, we will reply as soon as possible.

[email protected] or [email protected]

Owner
Wang Qingyu
A second-year Ph.D. student in Zhejiang University
Wang Qingyu
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
An image classification app boilerplate to serve your deep learning models asap!

Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho

Smaranjit Ghose 27 Oct 06, 2022