Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?", by Matthew Farrell, Blake Bordelon, Shubhendu Trivedi, and Cengiz Pehlevan. Note that the file models/vgg.py contains copyright statements for the original authors and modifiers of the script. The python packages used for the simulations are contained in environment.yml (this may include extra packages that are not necessary). To generate Figure 1, run python manifold_plots.py This script is fairly simple and self-explanatory. To generate Figures 2 and 3, run python plot_cnn_capacity.py At the bottom of the plot_cnn_capacity.py script, the plotting function is called for different panels. Comment out lines to generate specific figures. This script searches for a match with sets of parameters defined in cnn_capacity_params.py. To modify parameters used for simulations, modify the dictionaries in cnn_capacity_params.py or define your own parameter sets. For a description of different parameter options, see the docstring for the function cnn_capacity.get_capacity. The simulations take quite a lot of time to run, even with parallelization. Also a word of warning that the simulations take a lot of memory (~100GB for n_cores=5). To speed things up and reduce memory usage, one can set perceptron_style=efficient or pool_over_group=True, or reduce n_dichotomies. One can also choose to set seeds to seeds = [3] in plot_cnn_capacity.py. cnn_capacity_utils.py contains utility functions. The VGG model can be found in models/vgg.py. The direct sum (aka "grid cell") convolutional network model can be found in models/gridcellconv.py The code for generating datasets can be found in datasets.py. The code was modified and superficially refactored in preparation for releasing to the public. The simulations haven't been thoroughly tested after this refactoring so it's not 100% guaranteed that the code is correct (though it doesn't appear to throw errors). Fingers crossed that everything works the way it should. The development of this code was supported by the Harvard Data Science Initiative.
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"
Overview
Owner
Matthew Farrell
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation
TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding
Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,
Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t
DeiT: Data-efficient Image Transformers
DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake
Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).
Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:
Warning: This project does not have any current developer. See bellow.
Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_
A modern pure-Python library for reading PDF files
pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and
Differentiable Surface Triangulation
Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.
A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation
Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment
Reimplementation of Learning Mesh-based Simulation With Graph Networks
Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data
A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi
This repository will be a summary and outlook on all our open, medical, AI advancements.
medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic
Learning Modified Indicator Functions for Surface Reconstruction
Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator
ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar
VideoGPT: Video Generation using VQ-VAE and Transformers
VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture
Sentinel-1 vessel detection model used in the xView3 challenge
sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR