MutualGuide is a compact object detector specially designed for embedded devices

Overview

Introduction

MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two key features.

Firstly, the Mutual Guidance mecanism assigns labels to the classification task based on the prediction on the localization task, and vice versa, alleviating the misalignment problem between both tasks; Secondly, the teacher-student prediction disagreements guides the knowledge transfer in a feature-based detection distillation framework, thereby reducing the performance gap between both models.

For more details, please refer to our ACCV paper and BMVC paper.

Planning

  • Add RepVGG backbone.
  • Add ShuffleNetV2 backbone.
  • Add TensorRT transform code for inference acceleration.
  • Add draw function to plot detection results.
  • Add custom dataset training (annotations in XML format).
  • Add Transformer backbone.
  • Add BiFPN neck.

Benchmark

  • Without knowledge distillation:
Backbone Resolution APval
0.5:0.95
APval
0.5
APval
0.75
APval
small
APval
medium
APval
large
Speed V100
(ms)
Weights
ShuffleNet-1.0 512x512 35.8 52.9 38.6 19.8 40.1 48.3 8.3 Google
ResNet-34 512x512 44.1 62.3 47.6 26.5 50.2 58.3 6.9 Google
ResNet-18 512x512 42.0 60.0 45.3 25.4 47.1 56.0 4.4 Google
RepVGG-A2 512x512 44.2 62.5 47.5 27.2 50.3 57.2 5.3 Google
RepVGG-A1 512x512 43.1 61.3 46.6 26.6 49.3 55.9 4.4 Google
  • With knowledge distillation:
Backbone Resolution APval
0.5:0.95
APval
0.5
APval
0.75
APval
small
APval
medium
APval
large
Speed V100
(ms)
Weights
ResNet-18 512x512 42.9 60.7 46.2 25.4 48.8 57.2 4.4 Google
RepVGG-A1 512x512 44.0 62.1 47.3 27.6 49.9 57.9 4.4 Google

Remarks:

  • The precision is measured on the COCO2017 Val dataset.
  • The inference runtime is measured by Pytorch framework (without TensorRT acceleration) on a Tesla V100 GPU, and the post-processing time (e.g., NMS) is not included (i.e., we measure the model inference time).
  • To dowload from Baidu cloud, go to this link (password: dvz7).

Datasets

First download the VOC and COCO dataset, you may find the sripts in data/scripts/ helpful. Then create a folder named datasets and link the downloaded datasets inside:

$ mkdir datasets
$ ln -s /path_to_your_voc_dataset datasets/VOCdevkit
$ ln -s /path_to_your_coco_dataset datasets/coco2017

Remarks:

  • For training on custom dataset, first modify the dataset path XMLroot and categories XML_CLASSES in data/xml_dataset.py. Then apply --dataset XML.

Training

For training with Mutual Guide:

$ python3 train.py --neck ssd --backbone vgg16    --dataset VOC --size 320 --multi_level --multi_anchor --mutual_guide --pretrained
                          fpn            resnet34           COCO       512
                          pafpn          repvgg-A2          XML
                                         shufflenet-1.0

For knowledge distillation using PDF-Distil:

$ python3 distil.py --neck ssd --backbone vgg11    --dataset VOC --size 320 --multi_level --multi_anchor --mutual_guide --pretrained --kd pdf
                           fpn            resnet18           COCO       512
                           pafpn          repvgg-A1          XML
                                          shufflenet-0.5

Remarks:

  • For training without MutualGuide, just remove the --mutual_guide;
  • For training on custom dataset, convert your annotations into XML format and use the parameter --dataset XML. An example is given in datasets/XML/;
  • For knowledge distillation with traditional MSE loss, just use parameter --kd mse;
  • The default folder to save trained model is weights/.

Evaluation

Every time you want to evaluate a trained network:

$ python3 test.py --neck ssd --backbone vgg11    --dataset VOC --size 320 --trained_model path_to_saved_weights --multi_level --multi_anchor --pretrained --draw
                         fpn            resnet18           COCO       512
                         pafpn          repvgg-A1          XML
                                        shufflenet-0.5

Remarks:

  • It will directly print the mAP, AP50 and AP50 results on VOC2007 Test or COCO2017 Val;
  • Add parameter --draw to draw detection results. They will be saved in draw/VOC/ or draw/COCO/ or draw/XML/;
  • Add --trt to activate TensorRT acceleration.

Citing us

Please cite our papers in your publications if they help your research:

@InProceedings{Zhang_2020_ACCV,
    author    = {Zhang, Heng and Fromont, Elisa and Lefevre, Sebastien and Avignon, Bruno},
    title     = {Localize to Classify and Classify to Localize: Mutual Guidance in Object Detection},
    booktitle = {Proceedings of the Asian Conference on Computer Vision (ACCV)},
    month     = {November},
    year      = {2020}
}

@InProceedings{Zhang_2021_BMVC,
    author    = {Zhang, Heng and Fromont, Elisa and Lefevre, Sebastien and Avignon, Bruno},
    title     = {PDF-Distil: including Prediction Disagreements in Feature-based Distillation for object detection},
    booktitle = {Proceedings of the British Machine Vision Conference (BMVC)},
    month     = {November},
    year      = {2021}
}

Acknowledgement

This project contains pieces of code from the following projects: mmdetection, ssd.pytorch, rfbnet and yolox.

Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Deep-RTC [project page] This repository contains the source code accompanying our ECCV 2020 paper. Solving Long-tailed Recognition with Deep Realistic

Gina Wu 16 May 26, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023