coldcuts is an R package to automatically generate and plot segmentation drawings in R

Overview

R-CMD-check

coldcuts

coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays.

The name is inspired by one of Italy's best products.

🎓 You can find the documentation and a tutorial to get started at the package's page: https://langleylab.github.io/coldcuts

🗂 You can find additional segmentation files, ontologies and other information at https://langleylab.github.io/coldcuts/articles/segmentations.html

📄 You can read the preprint on arXiv at https://arxiv.org/abs/2201.10116

Citation

If you use coldcuts in your research, cite the preprint:

Giuseppe D'Agostino and Sarah Langley, Automated brain parcellation rendering and visualization in R with coldcuts, arXiv 2022, arXiv:2201.10116

Motivation

When dealing with neuroimaging data, or any other type of numerical data derived from brain tissues, it is important to situate it in its anatomical and structural context. Various authors provide parcellations or segmentations of the brain, according to their best interpretation of which functional and anatomical boundaries make sense for our understanding of the brain. There are several stand-alone tools that allow to visualize and manipulate segmentations. However, neuroimaging data, together with other functional data such as transcriptomics, is often manipulated in a statistical programming language such as R which does not have trivial implementations for the visualization of segmentations.

To bridge this gap, some R packages have been recently published:

  • ggseg by Athanasia Mo Mowinckel and Didac Vidal-Piñeiro
  • cerebroViz by Ethan Bahl, Tanner Koomar, and Jacob J Michaelson
  • fsbrain by Tim Schäfer and Christine Ecker

ggseg and cerebroviz offer 2D (and 3D in the case of ggseg3d) visualizations of human brain segmentations, with the possibility of integration with external datasets. These segmentations are manually curated, which means that new datasets must be manually inserted, and they are limited to the human brain in scope. ggseg in particular has made available several segmentations of human cortical surface atlases. fsbrain focuses on 3D visualization of human MRI data with external data integration and visualization in both native space and transformed spaces. It does not depend on manually curated datastes (beyond segmentations).

While these tools provide a wealth of beautiful visualization interfaces, we felt the need to implement a tool to systematically create 2D (and potentially 3D) objects that are easily shared and manipulated in R, with the addition of labels, external datasets and simple operations such as subsetting and projecting, with minimal need for manual curation and without limiting ourselves to a particular species.

Thus, coldcuts is our attempt at bridging the gap between imaging/high throughput brain data and R through data visualization.

Installing the package

⬇️ You can install this package using devtools::install_github():

devtools::install_github("langleylab/coldcuts")

Nota bene: coldcuts uses smoothr to smooth 2D polygons. This package requires the installation of terra which has some system dependencies for spatial data, such as GDAL, GEOS and PROJ that can sometimes be difficult to install, especially in machines on which you do not have admin rights.

One possible workaround when you do not have admin rights is to use conda virtual environments to install GDAL and other libraries using the conda-forge channel: link

Getting started

🏃🏽‍♀️ You can find a small example to get started here

Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022
PlenOctree Extraction algorithm

PlenOctrees_NeRF-SH This is an implementation of the Paper PlenOctrees for Real-time Rendering of Neural Radiance Fields. Not only the code provides t

49 Nov 05, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023