Convnet transfer - Code for paper How transferable are features in deep neural networks?

Overview

How transferable are features in deep neural networks?

This repository contains source code necessary to reproduce the results presented in the following paper:

@inproceedings{yosinski_2014_NIPS
  title={How transferable are features in deep neural networks?},
  author={Yosinski, Jason and Clune, Jeff and Bengio, Yoshua and Lipson, Hod},
  booktitle={Advances in Neural Information Processing Systems 27 (NIPS '14)},
  editor = {Z. Ghahramani and M. Welling and C. Cortes and N.D. Lawrence and K.Q. Weinberger},
  publisher = {Curran Associates, Inc.},
  pages = {3320--3328},
  year={2014}
}

The are four steps to using this codebase to reproduce the results in the paper.

  • Assemble prerequisites
  • Create datasets
  • Train models
  • Gather and plot results

Each is described below. Training results are also provided in the results directory for those just wishing to compare results to their own work without undertaking the arduous training process.

Assemble prerequisites

Several dependencies should be installed.

  • To run experiments: Caffe and its relevant dependencies (see install tutorial).
  • To produce plots: the IPython, numpy, and matplotlib packages for python. Depending on your setup, it may be possible to install these via pip install ipython numpy matplotlib.

Create Datasets

1. Obtain ILSVRC 2012 dataset

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 dataset can be downloaded here (registration required).

2. Create derivative dataset splits

The necessary smaller derivative datasets (random halves, natural and man-made halves, and reduced volume versions) can be created from the raw ILSVRC12 dataset.

$ cd ilsvrc12
$ ./make_reduced_datasets.sh

The script will do most of the work, including setting random seeds to hopefully produce the exact same random splits used in the paper. Md5sums are listed for each dataset file at the bottom of make_reduced_datasets.sh, which can be used to verify the match. Results may vary on different platforms though, so don't worry too much if your sums don't match.

3. Convert datasets to databases

The datasets created above are so far just text files providing a list of image filenames and class ids. To train a Caffe model, they should be converted to a LevelDB or LMDB, one per dataset. See the Caffe ImageNet Tutorial for a more in depth look at this process.

First, edit create_all_leveldbs.sh and set the IMAGENET_DIR and CAFFE_TOOLS_DIR to point to the directories containing the ImageNet image files and compiled caffe tools (like convert_imageset.bin), respectively. Then run:

$ ./create_all_leveldbs.sh

This step takes a lot of space (and time), approximately 230 GB for the base training dataset, and on average 115 GB for each of the 10 split versions, for a total of about 1.5 TB. If this is prohibitive, you might consider using a different type of data layer type for Caffe that loads images directly from a single shared directory.

4. Compute the mean of each dataset

Again, edit the paths in the script to point to the appropriate locations, and then run:

$ ./create_all_means.sh

This just computes the mean of each dataset and saves it in the dataset directory. Means are subtracted from input images during training and inference.

Train models

A total of 163 networks were trained to produce the results in the paper. Many of these networks can be trained in parallel, but because weights are transferred from one network to another, some must be trained serially. In particular, all networks in the first block below must be trained before any in the second block can be trained. All networks within a block may be trained at the same time. The "whenever" block does not contain dependencies and can be trained any time.

Block: one
  half*       (10 nets)

Block: two
  transfer*   (140 nets)

Block: whenever
  netbase     (1 net)
  reduced-*   (12 nets)

To train a given network, change to its directory, copy (or symlink) the required caffe executable, and run the training procedure. This can be accomplished using the following commands, demonstrated for the half0A network:

$ cd results/half0A
$ cp /path/to/caffe/build/tools/caffe.bin .
$ ./caffe.bin train -solver imagenet_solver.prototxt

Repeat this process for all networks in block: one and block: whenever above. Once the networks in block: one are trained, train all the networks in block: two similarly. This time the command is slightly different, because we need to load the base network in order to fine-tune it on the target task. Here's an example for the transfer0A0A_1_1 network:

$ cd results/transfer0A0A_1_1
$ cp /path/to/caffe/build/tools/caffe.bin .
$ ./caffe.bin train -solver imagenet_solver.prototxt -weights basenet/caffe_imagenet_train_iter_450000

The basenet symlinks have been added to point to the appropriate base network, but the basenet/caffe_imagenet_train_iter_450000 file will not exist until the relevant block: one networks has been trained.

Training notes: while the above procedure should work if followed literally, because each network takes about 9.5 days to train (on a K20 GPU), it will be much faster to train networks in parallel in a cluster environment. To do so, create and submit jobs as appropriate for your system. You'll also want to ensure that the output of the training procedure is logged, either by piping to a file

$ ./caffe.bin train ... > log_file 2>&1

or via whatever logging facilities are supplied by your cluster or job manager setup.

Plot results

Once the networks are trained, the results can be plotted using the included IPython notebook plots/transfer_plots.ipynb. Start the IPython Notebook server:

$ cd plots
$ ipython notebook

Select the transfer_plots.ipynb notebook and execute the included code. Note that without modification, the code will load results from the cached log files included in this repository. If you've run your own training and wish to plot those log files, change the paths in the "Load all the data" section to point to your log files instead.

Shortcut: to skip all the work and just see the results, take a look at this notebook with cached plots.

Questions?

Please drop me a line if you have any questions!

Owner
Jason Yosinski
Jason Yosinski
A knowledge base construction engine for richly formatted data

Fonduer is a Python package and framework for building knowledge base construction (KBC) applications from richly formatted data. Note that Fonduer is

HazyResearch 386 Dec 05, 2022
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an

AI2 8 Dec 01, 2022
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

Duo Li 1.3k Dec 28, 2022
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Amin Rezaei 126 Dec 27, 2022
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021