PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Overview

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

This is the PyTorch code of the BLIP paper. The code has been tested on PyTorch 1.10. To install the dependencies, run

pip install -r requirements.txt

Catalog:

  • Inference demo
  • Pre-trained and finetuned checkpoints
  • Finetuning code for Image-Text Retrieval, Image Captioning, VQA, and NLVR2
  • Pre-training code
  • Download of bootstrapped pre-training datasets

Inference demo:

Run our interactive demo using Colab notebook (no GPU needed). The demo includes code for: (1) image captioning, (2) open-ended visual question answering, (3) multimodal / unimodal feature extraction.

Integrated into Huggingface Spaces πŸ€— using Gradio. Try out the Web Demo Hugging Face Spaces

Pre-trained checkpoints:

Num. pre-train images BLIP w/ ViT-B BLIP w/ ViT-B and CapFilt-L BLIP w/ ViT-L
14M Download - -
129M Download Download Download

Finetuned checkpoints:

Task BLIP w/ ViT-B BLIP w/ ViT-B and CapFilt-L BLIP w/ ViT-L
Image-Text Retrieval (COCO) Download - Download
Image-Text Retrieval (Flickr30k) Download - Download
Image Captioning (COCO) - Download Download
VQA Download Download -
NLVR2 Download - -

Image-Text Retrieval:

  1. Download COCO and Flickr30k datasets from the original websites, and set 'image_root' in configs/retrieval_{dataset}.yaml accordingly.
  2. To evaluate the finetuned BLIP model on COCO, run:
python -m torch.distributed.run --nproc_per_node=8 train_retrieval.py \
--config ./configs/retrieval_coco.yaml \
--output_dir output/retrieval_coco \
--evaluate
  1. To finetune the pre-trained checkpoint using 8 A100 GPUs, first set 'pretrained' in configs/retrieval_coco.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth". Then run:
python -m torch.distributed.run --nproc_per_node=8 train_retrieval.py \
--config ./configs/retrieval_coco.yaml \
--output_dir output/retrieval_coco 

Image-Text Captioning:

  1. Download COCO and NoCaps datasets from the original websites, and set 'image_root' in configs/caption_coco.yaml and configs/nocaps.yaml accordingly.
  2. To evaluate the finetuned BLIP model on COCO, run:
python -m torch.distributed.run --nproc_per_node=8 train_caption.py --evaluate
  1. To evaluate the finetuned BLIP model on NoCaps, generate results with: (evaluation needs to be performed on official server)
python -m torch.distributed.run --nproc_per_node=8 eval_nocaps.py 
  1. To finetune the pre-trained checkpoint using 8 A100 GPUs, first set 'pretrained' in configs/caption_coco.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base.pth". Then run:
python -m torch.distributed.run --nproc_per_node=8 train_caption.py 

VQA:

  1. Download VQA v2 dataset and Visual Genome dataset from the original websites, and set 'vqa_root' and 'vg_root' in configs/vqa.yaml.
  2. To evaluate the finetuned BLIP model, generate results with: (evaluation needs to be performed on official server)
python -m torch.distributed.run --nproc_per_node=8 train_vqa.py --evaluate
  1. To finetune the pre-trained checkpoint using 16 A100 GPUs, first set 'pretrained' in configs/vqa.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base.pth". Then run:
python -m torch.distributed.run --nproc_per_node=16 train_vqa.py 

NLVR2:

  1. Download NLVR2 dataset from the original websites, and set 'image_root' in configs/nlvr.yaml.
  2. To evaluate the finetuned BLIP model, run
python -m torch.distributed.run --nproc_per_node=8 train_nlvr.py --evaluate
  1. To finetune the pre-trained checkpoint using 16 A100 GPUs, first set 'pretrained' in configs/nlvr.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth". Then run:
python -m torch.distributed.run --nproc_per_node=16 train_nlvr.py 

Pre-train:

  1. Prepare training json files where each json file contains a list. Each item in the list is a dictonary with two key-value pairs: {'image': path_of_image, 'caption': text_of_image}.
  2. In configs/pretrain.yaml, set 'train_file' as the paths for the json files .
  3. Pre-train the model using 8 A100 GPUs:
python -m torch.distributed.run --nproc_per_node=8 pretrain.py --config ./configs/Pretrain.yaml --output_dir output/Pretrain 

Pre-training datasets download:

We provide bootstrapped pre-training datasets as json files. Each json file contains a list. Each item in the list is a dictonary with two key-value pairs: {'url': url_of_image, 'caption': text_of_image}.

Image source Filtered web caption Filtered synthetic caption Filtered synthetic caption by ViT-L
CC3M+CC12M+SBU Download Download Download
LAION115M Download Download Download

Citation

If you find this code to be useful for your research, please consider citing.

@misc{li2022blip,
      title={BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation}, 
      author={Junnan Li and Dongxu Li and Caiming Xiong and Steven Hoi},
      year={2022},
      eprint={2201.12086},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

The implementation of BLIP relies on resources from ALBEF, Huggingface Transformers, and timm. We thank the original authors for their open-sourcing.

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
Face recognize and crop them

Face Recognize Cropping Module Source 아이디어 Face Alignment with OpenCV and Python Requirement ν•„μš” 라이브러리 imutil dlib python-opence (cv2) Usage μ‚¬μš© 방법 open

Cho Moon Gi 1 Feb 15, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022