Official source code of Fast Point Transformer, CVPR 2022

Overview

Fast Point Transformer

Project Page | Paper

This repository contains the official source code and data for our paper:

Fast Point Transformer
Chunghyun Park, Yoonwoo Jeong, Minsu Cho, and Jaesik Park
POSTECH GSAI & CSE
CVPR, 2022, New Orleans.

An Overview of the proposed pipeline

Overview

This work introduces Fast Point Transformer that consists of a new lightweight self-attention layer. Our approach encodes continuous 3D coordinates, and the voxel hashing-based architecture boosts computational efficiency. The proposed method is demonstrated with 3D semantic segmentation and 3D detection. The accuracy of our approach is competitive to the best voxel based method, and our network achieves 129 times faster inference time than the state-of-the-art, Point Transformer, with a reasonable accuracy trade-off in 3D semantic segmentation on S3DIS dataset.

Citation

If you find our code or paper useful, please consider citing our paper:

@inproceedings{park2022fast,
 title={{Fast Point Transformer}},
 author={Chunghyun Park and Yoonwoo Jeong and Minsu Cho and Jaesik Park},
 booktitle={Proceedings of the {IEEE/CVF} Conference on Computer Vision and Pattern Recognition (CVPR)},
 year={2022}
}

Experiments

1. S3DIS Area 5 test

We denote MinkowskiNet42 trained with this repository as MinkowskiNet42. We use voxel size 4cm for both MinkowskiNet42 and our Fast Point Transformer.

Model Latency (sec) mAcc (%) mIoU (%) Reference
PointTransformer 18.07 76.5 70.4 Codes from the authors
MinkowskiNet42 0.08 74.1 67.2 Checkpoint
  + rotation average 0.66 75.1 69.0 -
FastPointTransformer 0.14 76.6 69.2 Checkpoint
  + rotation average 1.13 77.6 71.0 -

2. ScanNetV2 validation

Model Voxel Size mAcc (%) mIoU (%) Reference
MinkowskiNet42 2cm - 72.2 Official GitHub
MinkowskiNet42 2cm 81.4 72.1 Checkpoint
FastPointTransformer 2cm 81.2 72.5 Checkpoint
MinkowskiNet42 5cm 76.3 67.0 Checkpoint
FastPointTransformer 5cm 78.9 70.0 Checkpoint
MinkowskiNet42 10cm 70.8 60.7 Checkpoint
FastPointTransformer 10cm 76.1 66.5 Checkpoint

Installation

This repository is developed and tested on

  • Ubuntu 18.04 and 20.04
  • Conda 4.11.0
  • CUDA 11.1
  • Python 3.8.13
  • PyTorch 1.7.1 and 1.10.0
  • MinkowskiEngine 0.5.4

Environment Setup

You can install the environment by using the provided shell script:

~$ git clone --recursive [email protected]:POSTECH-CVLab/FastPointTransformer.git
~$ cd FastPointTransformer
~/FastPointTransformer$ bash setup.sh fpt
~/FastPointTransformer$ conda activate fpt

Training & Evaluation

First of all, you need to download the datasets (ScanNetV2 and S3DIS), and preprocess them as:

(fpt) ~/FastPointTransformer$ python src/data/preprocess_scannet.py # you need to modify the data path
(fpt) ~/FastPointTransformer$ python src/data/preprocess_s3dis.py # you need to modify the data path

And then, locate the provided meta data of each dataset (src/data/meta_data) with the preprocessed dataset following the structure below:

${data_dir}
├── scannetv2
│   ├── meta_data
│   │   ├── scannetv2_train.txt
│   │   ├── scannetv2_val.txt
│   │   └── ...
│   └── scannet_processed
│       ├── train
│       │   ├── scene0000_00.ply
│       │   ├── scene0000_01.ply
│       │   └── ...
│       └── test
└── s3dis
    ├── meta_data
    │   ├── area1.txt
    │   ├── area2.txt
    │   └── ...
    └── s3dis_processed
        ├── Area_1
        │   ├── conferenceRoom_1.ply
        │   ├── conferenceRoom_2.ply
        │   └── ...
        ├── Area_2
        └── ...

After then, you can train and evalaute a model by using the provided python scripts (train.py and eval.py) with configuration files in the config directory. For example, you can train and evaluate Fast Point Transformer with voxel size 4cm on S3DIS dataset via the following commands:

(fpt) ~/FastPointTransformer$ python train.py config/s3dis/train_fpt.gin
(fpt) ~/FastPointTransformer$ python eval.py config/s3dis/eval_fpt.gin {checkpoint_file} # use -r option for rotation averaging.

Consistency Score

You need to generate predictions via the following command:

(fpt) ~/FastPointTransformer$ python -m src.cscore.prepare {checkpoint_file} -m {model_name} -v {voxel_size} # This takes hours.

Then, you can calculate the consistency score (CScore) with:

(fpt) ~/FastPointTransformer$ python -m src.cscore.calculate {prediction_dir} # This takes seconds.

3D Object Detection using VoteNet

Please refer this repository.

Acknowledgement

Our code is based on the MinkowskiEngine. We also thank Hengshuang Zhao for providing the code of Point Transformer. If you use our model, please consider citing them as well.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
Unsupervised Image-to-Image Translation

UNIT: UNsupervised Image-to-image Translation Networks Imaginaire Repository We have a reimplementation of the UNIT method that is more performant. It

Ming-Yu Liu 劉洺堉 1.9k Dec 26, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan

Xiangtao Kong 308 Jan 05, 2023
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022