Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Overview

Motion prediction with Hierarchical Motion Recurrent Network

Introduction

This work concerns motion prediction of articulate objects such as human, fish and mice. Given a sequence of historical skeletal joints locations, we model the dynamics of the trajectory as kinematic chains of SE(3) group actions, parametrized by se(3) Lie algebra parameters. A sequence to sequence model employing our novel Hierarchical Motion Recurrent (HMR) Network as the decoder is employed to learn the temporal context of input pose sequences so as to predict future motion.

Instead of adopting the conventional Euclidean L2 loss function for the 3D coordinates, we propose a geodesic regression loss layer on the SE(3) manifold which provides the following advantages.

  • The SE(3) representation respects the anatomical and kinematic constraints of the skeletal model, i.e. bone lengths and physical degrees of freedom at the joints.
  • Spatial relations underlying the joints are fully captured.
  • Subtleties of temporal dynamics are better modelled in the manifold space than Euclidean space due to the absence of redundancy and constraints in the Lie algebra parameterization.

Train and Predict

The main file is found in motion_prediction.py.
To train and predict on default setting, execute the following with python 3.

python motion_prediction.py
FLAGS Default value Possible values Remarks
dataset --dataset Human Human, Fish, Mouse
datatype --datatype lie lie, xyz
action --action all all, actions listed below
training --training=1 0, 1
visualize --visualize=1 0, 1
longterm --longterm=0 0, 1 Super long-term prediction exceeding 60s.
dataset: Human
action: walking, eating or smoking.

To train and predict for different settings, simply set different value for the flags. An example of long term prediction for walking on the Human dataset is given below.

python motion_prediction.py --action walking --longterm=1

Possible actions for Human 3.6m

["directions", "discussion", "eating", "greeting", "phoning",
 "posing", "purchases", "sitting", "sittingdown", "smoking",
 "takingphoto", "waiting", "walking", "walkingdog", "walkingtogether"]

The configuration file is found in training_config.py. There are choices of different LSTM architectures as well as different loss functions that can be chosen in the configuration.

Checkpoint and Output

checkpoints are saved in:

./checkpoint/dataset[Human, Fish, Mouse]/datatype[lie, xyz]_model(_recurrent-steps_context-window_hidden-size)_loss/action/inputWindow_outputWindow

outputs are saved in:

./output/dataset[Human, Fish, Mouse]/datatype[lie, xyz]_model_(_recurrent-steps_context-window_hidden-size)_loss/action/inputWindow_outputWindow

*[ ] denotes possible arguments and ( ) is specific for our HMR model

This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ€”๐˜ˆ๐˜ต๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜œ-๐˜•๐˜ฆ๐˜ต, ๐˜š๐˜Œ๐˜™๐˜ฆ๐˜ด๐˜•๐˜ฆ๐˜ต) and a nested decoder structure with deep supervision (โ€”๐˜œ๐˜•๐˜ฆ๐˜ต++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ€”๐˜ˆ๐˜ต๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜œ-๐˜•๐˜ฆ๐˜ต, ๐˜š๐˜Œ๐˜™๐˜ฆ๐˜ด๐˜•๐˜ฆ๐˜ต) and a nested decoder structure with deep supervision (โ€”๐˜œ๐˜•๐˜ฆ๐˜ต++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
2020 CCFๅคงๆ•ฐๆฎไธŽ่ฎก็ฎ—ๆ™บ่ƒฝๅคง่ต›-้ž็ป“ๆž„ๅŒ–ๅ•†ไธšๆ–‡ๆœฌไฟกๆฏไธญ้š็งไฟกๆฏ่ฏ†ๅˆซ-็ฌฌ7ๅๆ–นๆกˆ

2020CCF-NER 2020 CCFๅคงๆ•ฐๆฎไธŽ่ฎก็ฎ—ๆ™บ่ƒฝๅคง่ต›-้ž็ป“ๆž„ๅŒ–ๅ•†ไธšๆ–‡ๆœฌไฟกๆฏไธญ้š็งไฟกๆฏ่ฏ†ๅˆซ-็ฌฌ7ๅๆ–นๆกˆ bert base + flat + crf + fgm + swa + pu learning็ญ–็•ฅ + clueๆ•ฐๆฎ้›† = test1ๅ•ๆจก0.906 ่ฏๅ‘้‡

67 Oct 19, 2022