Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Overview

Motion prediction with Hierarchical Motion Recurrent Network

Introduction

This work concerns motion prediction of articulate objects such as human, fish and mice. Given a sequence of historical skeletal joints locations, we model the dynamics of the trajectory as kinematic chains of SE(3) group actions, parametrized by se(3) Lie algebra parameters. A sequence to sequence model employing our novel Hierarchical Motion Recurrent (HMR) Network as the decoder is employed to learn the temporal context of input pose sequences so as to predict future motion.

Instead of adopting the conventional Euclidean L2 loss function for the 3D coordinates, we propose a geodesic regression loss layer on the SE(3) manifold which provides the following advantages.

  • The SE(3) representation respects the anatomical and kinematic constraints of the skeletal model, i.e. bone lengths and physical degrees of freedom at the joints.
  • Spatial relations underlying the joints are fully captured.
  • Subtleties of temporal dynamics are better modelled in the manifold space than Euclidean space due to the absence of redundancy and constraints in the Lie algebra parameterization.

Train and Predict

The main file is found in motion_prediction.py.
To train and predict on default setting, execute the following with python 3.

python motion_prediction.py
FLAGS Default value Possible values Remarks
dataset --dataset Human Human, Fish, Mouse
datatype --datatype lie lie, xyz
action --action all all, actions listed below
training --training=1 0, 1
visualize --visualize=1 0, 1
longterm --longterm=0 0, 1 Super long-term prediction exceeding 60s.
dataset: Human
action: walking, eating or smoking.

To train and predict for different settings, simply set different value for the flags. An example of long term prediction for walking on the Human dataset is given below.

python motion_prediction.py --action walking --longterm=1

Possible actions for Human 3.6m

["directions", "discussion", "eating", "greeting", "phoning",
 "posing", "purchases", "sitting", "sittingdown", "smoking",
 "takingphoto", "waiting", "walking", "walkingdog", "walkingtogether"]

The configuration file is found in training_config.py. There are choices of different LSTM architectures as well as different loss functions that can be chosen in the configuration.

Checkpoint and Output

checkpoints are saved in:

./checkpoint/dataset[Human, Fish, Mouse]/datatype[lie, xyz]_model(_recurrent-steps_context-window_hidden-size)_loss/action/inputWindow_outputWindow

outputs are saved in:

./output/dataset[Human, Fish, Mouse]/datatype[lie, xyz]_model_(_recurrent-steps_context-window_hidden-size)_loss/action/inputWindow_outputWindow

*[ ] denotes possible arguments and ( ) is specific for our HMR model

Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
Matthew Colbrook 1 Apr 08, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022