An open-access benchmark and toolbox for electricity price forecasting

Overview

epftoolbox

The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a set of tools that ensure reproducibility and establish research standards in electricity price forecasting research.

The library has been developed as part of the following article:

  • Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, Rafał Weron. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark". Applied Energy 2021; 293:116983. https://doi.org/10.1016/j.apenergy.2021.116983.

The library is distributed under the AGPL-3.0 License and it is built on top of scikit-learn, tensorflow, keras, hyperopt, statsmodels, numpy, and pandas.

Website: https://epftoolbox.readthedocs.io/en/latest/

Getting started

Download the repository and navigate into the folder

$ git clone https://github.com/jeslago/epftoolbox.git
$ cd epftoolbox

Install using pip

$ pip install .

Navigate to the examples folder and check the existing examples to get you started. The examples include several applications of the two state-of-the art forecasting model: a deep neural net and the LEAR model.

Documentation

The documentation can be found here. It provides an introduction to the library features and explains all functionalities in detail. Note that the documentation is still being built and some functionalities are still undocumented.

Features

The library provides easy access to a set of tools and benchmarks that can be used to evaluate and compare new methods for electricity price forecasting.

Forecasting models

The library includes two state-of-the-art forecasting models that can be automatically employed in any day-ahead market without the need of expert knowledge. At the moment, the library comprises two main models:

  • One based on a deep neural network
  • A second based on an autoregressive model with LASSO regulazariton (LEAR).

Evaluation metrics

Standard evaluation metrics for electricity price forecasting including:

  • Multiple scalar metrics like MAE, sMAPE, or MASE.
  • Two statistical tests (Diebold-Mariano and Giacomini-White) to evaluate statistical differents in forecasting performance.

Day-ahead market datasets

Easy access to five datasets comprising 6 years of data each and representing five different day-ahead electricity markets:

  • The datasets represents the EPEX-BE, EPEX-FR, EPEX-DE, NordPool, and PJM markets.
  • Each dataset contains historical prices plus two time series representing exogenous inputs.

Available forecasts

Readily available forecasts of the state-of-the-art methods so that researchers can evaluate new methods without re-estimating the models.

Citation

If you use the epftoolbox in a scientific publication, we would appreciate citations to the following paper:

  • Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, Rafał Weron. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark". Applied Energy 2021; 293:116983. https://doi.org/10.1016/j.apenergy.2021.116983.

Bibtex entry::

@article{epftoolbox,
title = {Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark},
journal = {Applied Energy},
volume = {293},
pages = {116983},
year = {2021},
doi = {https://doi.org/10.1016/j.apenergy.2021.116983},
author = {Jesus Lago and Grzegorz Marcjasz and Bart {De Schutter} and Rafał Weron}
}
Owner
Applied Scientist At Amazon
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022