A tool to estimate time varying instantaneous reproduction number during epidemics

Related tags

Deep LearningEpiEstim
Overview

EpiEstim

R build status Codecov test coverage DOI

A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper:

@article{Cori2013, author={Cori, A and Ferguson, NM and Fraser, C and Cauchemez, S},
year={2013},
title={{A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics}},
journal={Am. J. Epidemiol.},
doi={10.1093/aje/kwt133},
}

Anne Cori, Neil M. Ferguson, Christophe Fraser, Simon Cauchemez, A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics, American Journal of Epidemiology, Volume 178, Issue 9, 1 November 2013, Pages 1505–1512.

Citing this code resource

We kindly request that you cite this codebase as follows (BibTeX format):

@misc{Cori2021, author={Cori, A and Kamvar, ZN and Stockwin, J and Jombart, T and Dahlqwist, E and FitzJohn, R and Thompson, R},
year={2021},
title={{EpiEstim v2.2-3: A tool to estimate time varying instantaneous reproduction number during epidemics}},
publisher={GitHub}, journal={GitHub repository},
howpublished = {\url{https://github.com/mrc-ide/EpiEstim}}, commit={c18949d93fe4dcc384cbcae7567a788622efc781},
}

Comments
  • R session aborted when using the Wallinga and Teunis method to estimate case reproduction number

    R session aborted when using the Wallinga and Teunis method to estimate case reproduction number

    Hi Anne Cori,

    I am using EpiEstim to estimate the instantaneous (case) reproduction number for 2009 pandemic influenza A (H1N1) in mainland China. The following are my code:

    rm(list = ls())
    
    load(url("http://tonytsai.name/confirmed_pdm_dec.rda"))
    
    # instantaneous reproduction number estimation for pandemic --------------------
    # using ParametricSI method
    # the instantaneous reproduction number can be estimated after May 22nd, 2009
    EstimateR(dec$cases, T.Start = 22:359, T.End = 28:365, method = "ParametricSI", 
              Mean.SI = 2.6, Std.SI = 1.3, plot = TRUE, leg.pos = xy.coords(1, 3))
    # case reproduction number estimaion for pandemic ------------------------------
    # using the Wallinga and Teunis method
    WT(dec$cases, T.Start = 20:100, T.End = 26:106, method = "ParametricSI", Mean.SI = 2.6, 
       Std.SI = 1.3, plot = TRUE, nSim = 100)
    

    The instantaneous reproduction number can be successfully estimated, but the WT function failed and the R session aborted.

    image

    Could you help me to fix the problem with WT function? Thank you very much.

    opened by caijun 8
  • Consolidate `new-version` branch with `release`

    Consolidate `new-version` branch with `release`

    There are two branches that are ahead of master, new-version and release. It is confusing why both of these should be ahead of master. When comparing these, it appears that release may be slightly ahead of new-version and should be favored: https://github.com/annecori/EpiEstim/compare/new-version..release

    opened by zkamvar 7
  • Dates

    Dates

    proposed changes to allow a Date column to be specified in I, which is then used for plotting --> addresses issue #12

    also, added errors when the estimation is performed to early or too late --> addresses issue #15 and #19

    finally, also allowed EstimateR and WT to take incidence objects (from class incidence from package incidence) as arguments --> addresses issue #13

    opened by annecori 6
  • Confidence Interal of EpiEStim app - identical for 75% & 25%

    Confidence Interal of EpiEStim app - identical for 75% & 25%

    Dr. Robin Thomas asked me to submit this bug report. There is an error in the EpiEstim app which causes the 75% & 25% confidence intervals to show as identical.

    t_start | t_end | Mean(R) | Std(R) | Quantile.0.025(R) | Quantile.0.05(R) | Quantile.0.25(R) | Median(R) | Quantile.0.75(R) | Quantile.0.95(R) | Quantile.0.975(R) -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- 2 | 8 | 1.676272 | 0.976486 | 0.338931 | 0.449985 | 3.524117 | 1.492907 | 3.524117 | 3.524117 | 4.034139 3 | 9 | 2.584599 | 1.163681 | 0.839038 | 1.020117 | 4.750958 | 2.408954 | 4.750958 | 4.750958 | 5.33603 4 | 10 | 2.940135 | 1.134309 | 1.165467 | 1.355705 | 5.003363 | 2.791074 | 5.003363 | 5.003363 | 5.543205 5 | 11 | 2.29199 | 0.892125 | 0.902246 | 1.056114 | 3.929101 | 2.176504 | 3.929101 | 3.929101 | 4.352027 6 | 12 | 2.222825 | 0.803635 | 0.943369 | 1.096749 | 3.693079 | 2.123938 | 3.693079 | 3.693079 | 4.045335 7 | 13 | 2.13141 | 0.730564 | 0.960056 | 1.099175 | 3.455796 | 2.046818 | 3.455796 | 3.455796 | 3.792869 8 | 14 | 3.563511 | 0.88762 | 2.06355 | 2.251539 | 5.157335 | 3.483487 | 5.157335 | 5.157335 | 5.525408 9 | 15 | 2.845731 | 0.687544 | 1.678171 | 1.830796 | 4.07437 | 2.7868 | 4.07437 | 4.07437 | 4.353653 10 | 16 | 2.918638 | 0.626415 | 1.850218 | 1.98553 | 4.028234 | 2.865315 | 4.028234 | 4.028234 | 4.293019

    opened by kcng802 5
  • Error calling `wallinga_teunis` (length mismatch)

    Error calling `wallinga_teunis` (length mismatch)

    Lauren McGough (@unrealmcg) and I have been doing some simple tests to compare Rt methods on synthetic data. We've been running into errors when calling the wallinga_teunis() function in EpiEstim, of the form values must be length <A,> but FUN(X[[1]]) result is length <B>.

    This only happens when n_sim > 0. If n_sim == 0—skipping the CIs—it seems to be fine.

    E.g.:

    Error in vapply(seq_len(config$n_sim), function(i) draw_one_set_of_ancestries(),  : 
      values must be length 19889,
     but FUN(X[[1]]) result is length 19885
    Calls: wallinga_teunis -> t -> vapply
    Execution halted
    

    That error came from the following code, with inline data (just generated from a stochastic SEIR model):

    library(EpiEstim)
    
    incidence <- c(
      1, 3, 2, 2, 2, 1, 1, 1, 1, 1, 4, 1, 4, 3, 2, 2, 2, 3, 7, 8, 3, 0, 1, 0, 3, 3, 3, 2, 1, 1, 3, 1, 3, 2, 0, 0, 3, 2, 0, 1, 2, 0, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 3, 5, 5, 5, 3, 4, 5, 3, 6, 2, 3, 10, 8, 7, 7, 11, 5, 7, 11, 7, 4, 12, 10, 9, 13, 10, 12, 9, 5, 8, 9, 6, 8, 11, 9, 12, 12, 7, 12, 9, 15, 10, 8, 13, 13, 19, 8, 5, 14, 15, 10, 15, 12, 17, 14, 13, 13, 14, 16, 16, 14, 11, 13, 19, 21, 15, 15, 20, 14, 11, 23, 12, 20, 21, 18, 18, 19, 18, 20, 20, 17, 18, 31, 28, 13, 29, 20, 24, 31, 25, 29, 23, 33, 24, 27, 30, 26, 26, 24, 25, 21, 28, 41, 31, 32, 47, 29, 37, 36, 35, 35, 35, 46, 41, 37, 38, 28, 41, 35, 35, 38, 20, 31, 38, 42, 35, 31, 42, 39, 47, 30, 57, 33, 40, 29, 28, 41, 34, 33, 42, 48, 32, 38, 33, 46, 45, 41, 42, 46, 42, 39, 52, 43, 46, 44, 33, 45, 56, 36, 54, 51, 52, 45, 51, 57, 55, 59, 60, 45, 46, 56, 37, 49, 58, 38, 55, 47, 60, 51, 41, 51, 36, 63, 35, 43, 57, 60, 43, 60, 60, 51, 44, 51, 64, 65, 75, 68, 65, 66, 62, 69, 57, 67, 67, 69, 68, 78, 60, 72, 64, 66, 61, 67, 55, 71, 82, 60, 78, 77, 70, 76, 64, 63, 62, 58, 75, 80, 71, 80, 67, 57, 67, 63, 81, 77, 77, 72, 74, 69, 64, 83, 66, 77, 73, 62, 64, 82, 72, 72, 58, 56, 66, 86, 68, 70, 63, 71, 60, 61, 57, 54, 54, 60, 58, 60, 62, 68, 46, 70, 75, 59, 73, 58, 67, 50, 66, 59, 69, 68, 63, 76, 62, 62, 58, 66, 60, 75, 60, 78, 63, 53, 70, 66, 71, 46, 61, 66, 72, 75, 83, 64, 73, 64, 55, 88, 63, 66, 67, 66, 78, 62, 71, 70, 77, 65, 45, 76, 73, 72, 53, 50, 68, 65, 66, 44, 52, 59, 77, 52, 66, 61, 66, 64, 68, 59, 64, 51, 46, 57, 61, 52, 44, 58, 48, 40, 48, 55, 62, 42, 50, 53, 39, 53, 50, 49, 53, 49, 43, 44, 49, 44, 43, 42, 39, 37, 37, 34, 41, 50, 46, 30, 43, 45, 35, 27, 37, 45, 32, 46, 26, 26, 32, 27, 34, 34, 23, 33, 36, 28, 36, 33, 32, 29, 38, 31, 30, 30, 38, 27, 34, 38, 34, 19, 27, 35, 32, 28, 36, 26, 25, 33, 23, 26, 28, 20, 27, 24, 25, 20, 28, 21, 20, 26, 24, 19, 16, 21, 22, 17, 23, 22, 17, 24, 30, 17, 16, 18, 16, 15, 17, 18, 16, 14, 18, 21, 18, 14, 19, 17, 17, 10, 19, 19, 14, 13, 15, 9, 9, 10, 13, 10, 9, 13, 8, 10, 14, 9, 9, 10, 5, 17, 14, 10, 14, 14, 5, 15, 12, 9, 11, 18, 12, 11, 12, 14, 13, 13, 10, 10, 17, 15, 7, 13, 11, 8, 7, 9, 9, 7, 9, 6, 10, 14, 10, 7, 3, 5, 11, 9, 4, 7, 5, 5, 7, 5, 9, 8, 6, 3, 4, 8, 6, 6, 8, 5, 5, 5, 6, 8, 4, 3, 7, 8, 7, 3, 5, 7, 7, 4, 2, 4, 7, 1, 2, 3, 3, 5, 4, 3, 2, 4, 5, 1, 3, 1, 3, 1, 3, 3, 4, 2, 6, 0, 2, 6, 7, 4, 4, 4, 2, 0, 6, 0, 1, 2, 3, 0, 1, 2, 5, 3, 5, 3, 1, 1, 3, 1, 3, 1, 4, 2, 4, 3, 2, 2, 3, 3, 1, 1, 3, 6, 3, 2, 1, 2, 3, 4, 3, 2, 0, 2, 4, 3, 4, 0, 5, 2, 1, 1, 4, 1, 1, 2, 2, 5, 2, 1, 1, 4, 1, 3, 3, 4, 3, 5, 3, 3, 5, 4, 2, 0, 2, 3, 5, 3, 2, 7, 1, 1, 2, 1, 2, 1, 1, 3, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 2, 2, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 3, 1, 3, 1, 1, 1, 2, 0, 3, 1, 0, 2, 1, 1, 0, 0, 2, 0, 1, 1, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0
    )
    n_t <- length(incidence)
    
    mean_serial_int <- 1/(1.1 / 5) + 3
    std_serial_int <- mean_serial_int
    
    window_size <- 11
    
    t_start <- seq(2, n_t - 20)
    t_end <- t_start + window_size - 1
    wt_result <- wallinga_teunis(
      incidence, method="parametric_si",
      config = list(
        t_start = t_start,
        t_end = t_end,
        mean_si = mean_serial_int,
        std_si = std_serial_int,
        n_sim = 10
      )
    )
    
    bug 
    opened by edbaskerville 5
  • Quantile.0.25(R) always equals Quantile.0.75(R)

    Quantile.0.25(R) always equals Quantile.0.75(R)

    library(EpiEstim)
    data(Flu2009)
    T <- nrow(Flu2009$incidence)
    t_start <- seq(2, T-6) # starting at 2 as conditional on the past observations
    t_end <- t_start + 6 # adding 6 to get 7-day windows as bounds included in window
    res_weekly <- EpiEstim::estimate_R(Flu2009$incidence, 
                             method="parametric_si",
                             config = EpiEstim::make_config(list(
                                 t_start = t_start,
                                 t_end = t_end,
                                 mean_si = 2.6, 
                                 std_si = 1.5)))
    res_weekly$R
    

    results in :

    t_start t_end   Mean(R)     Std(R) Quantile.0.025(R) Quantile.0.05(R) Quantile.0.25(R) Median(R) Quantile.0.75(R)
    1        2     8 1.7357977 0.40913143        1.02874370       1.12193325        2.4589724 1.7037612        2.4589724
    2        3     9 1.7491678 0.36472669        1.10882231       1.19547993        2.3891206 1.7238839        2.3891206
    

    Other quantiles look OK

    bug 
    opened by robchallen 5
  • Re-initiate tests and implement continuous integration

    Re-initiate tests and implement continuous integration

    Related to #40,

    The new version of EpiEstim currently has no tests and that's.... not good. In fact, with the current master branch, Example 2 fails.

    Regarding tests, the current setup is relatively reasonable since they do not rely on randomization to generate the data, but we need to find out why Example 2 is no good.

    This could have been caught earlier with continuous integration, so I would suggest to use the following to create it.

    usethis::use_travis()
    usethis::use_appveyor()
    
    opened by zkamvar 5
  • Unreasonably high value of instantaneous reproduction number estimation?

    Unreasonably high value of instantaneous reproduction number estimation?

    Hi Anne Cori,

    I am using EpiEstim to estimate the instantaneous (case) reproduction number during post-pandemic period for 2009 pandemic influenza A (H1N1) in mainland China. The EstimateR function successfully estimated the R(t); however the maximal estimation of R(t) is 47.5, which is so large that I don't think it makes sense. Could you help me to explain why such a large estimation of R(t) could be produced? Thank you very much.

    > rm(list = ls())
    > 
    > load(url("http://tonytsai.name/confirmed_post-pdm_dec.rda"))
    > 
    > # instantaneous reproduction number estimation for post-pandemic --------------------
    > # using ParametricSI method
    > # the instantaneous reproduction number can be estimated after May 2nd, 2010
    > x <- EstimateR(dec$cases, T.Start = 2:359, T.End = 8:365, method = "ParametricSI", 
    +                Mean.SI = 2.6, Std.SI = 1.3, plot = TRUE, leg.pos = xy.coords(1, 3))
    > max(x$R$`Mean(R)`)
    [1] 47.54329
    

    image

    opened by caijun 5
  • Wallinga fix

    Wallinga fix

    Pull Request Closes #92

    • Fixes a bug where draw_one_set_of_ancestries would return a result of the wrong length. It would calculate the length based on the time window, but everything else is based on T. I am not familiar with the actual maths involved here, so please do check this is correct.

    • Fixes a bug where ot was not defined.

    How has this been tested Examples were given in #92, and these now work correctly.

    Checklist

    • [X] I have added tests to prove my changes work
    • [X] I have added documentation where required
    • [X] I have updated NEWS.md with a short description of my change
    opened by jstockwin 4
  • add sample_posterior_R function

    add sample_posterior_R function

    This will fix #70, but I've modified it so that it takes from a specific time window of R:

    
    library("EpiEstim")
    #> Registered S3 methods overwritten by 'ggplot2':
    #>   method         from 
    #>   [.quosures     rlang
    #>   c.quosures     rlang
    #>   print.quosures rlang
    data("Flu2009")
    
    res <- estimate_R(incid = Flu2009$incidence, 
                      method = "non_parametric_si",
                      config = make_config(list(si_distr = Flu2009$si_distr)))
    #> Default config will estimate R on weekly sliding windows.
    #>     To change this change the t_start and t_end arguments.
    
    hist(sample_posterior_R(res, n = 5000, window = 1L), col = "grey",
         main = "5000 samples of R from the first weekly window",
         xlab = "R",
         xlim = c(0, 4))
    

    
    hist(sample_posterior_R(res, n = 5000, window = 10L), col = "grey",
         main = "5000 samples of R from the tenth weekly window",
         xlab = "R",
         xlim = c(0, 4))
    

    win_col <- ifelse(seq(nrow(res$R)) %in% c(1, 10), "red", "black")
    plot(res, "R") + ggplot2::geom_point(color = win_col)
    

    Created on 2019-06-06 by the reprex package (v0.3.0)

    opened by zkamvar 4
  • Tag release of 2.2-3

    Tag release of 2.2-3

    Sorry I've been absent on this. It would be good to tag the new version as it was released to CRAN. I think tagging the most recent commit with 2.2-3 would be sufficient.

    opened by zkamvar 3
  • Use incidence2 inputs

    Use incidence2 inputs

    In line with https://github.com/mrc-ide/EpiEstim/issues/152, it would be useful to provide an S3 method for incidence2 inputs. The incidence2 package is meant as a replacement for incidence, and offers more flexibility. Some issues to think about / handle:

    • handle multiple stratifications
    • handle non-days time intervals (may need postponing into a separate issue)
    enhancement 
    opened by thibautjombart 0
  • Turn estimate_R into a generic with S3 methods

    Turn estimate_R into a generic with S3 methods

    Turning the main function into a generic will facilitate providing dedicated functions for different types of inputs, e.g. an integer vector, and incidence, or an incidence2 object.

    enhancement 
    opened by thibautjombart 0
  • estimate_advantage is not available if the package is installed using install.packages()

    estimate_advantage is not available if the package is installed using install.packages()

    Hi!

    First of all thank you so much for this great package! I downloaded EpiEstim a few months ago using install.packages() and I've only been using the estimate_R function so far and that has worked fine. Today, I needed to use the estimate_advantage function but that gave me an error saying that the function couldn't be found. I couldn't access the vignette associated with it (MV_EpiEstim_vignette) either. I tried uninstalling and reinstalling it but that didn't fix the problem so I uninstalled it again and then installed it using devtools::install_github instead and that worked. I'm not sure if I did something weird when I installed it initially, but I thought I should let you know!

    Best, Anjalika

    opened by anjalika-nande 0
  • Return posterior draws for R in estimate_R

    Return posterior draws for R in estimate_R

    estimate_R currently returns the mean and standard deviation of R, which then can be used to draw samples from the Gamma. It would be convenient to have an option that the posterior draws from estimate_R are returned directly for subsequent use in the projections package

    opened by nbanho 0
Releases(2.2-3)
Owner
MRC Centre for Global Infectious Disease Analysis
MRC Centre hosted within the Department of Infectious Disease Epidemiology at Imperial College London
MRC Centre for Global Infectious Disease Analysis
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022