Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

Related tags

Deep LearningJANUS
Overview

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design

This repository contains code for the paper: JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design. By: AkshatKumar Nigam, Robert Pollice, Alán Aspuru-Guzik

Package Requirements:

Using The Code:

The code can be run using:

python ./JANUS.py

Within params_init.py, a user has the option to provide:

  1. A function for calculting property values (see function calc_prop).
  2. Input parameters that are to be used by JANUS (see function generate_params). Initial parameters are provided. These are picked based on prior experience by the authors of the paper.

Output Generation:

All results from running JANUS will be stored here. The following files will be created:

  1. fitness_explore.txt: Fitness values for all molecules from the exploration component of JANUS.
  2. fitness_local_search.txt: Fitness values for all molecules from the exploitation component of JANUS.
  3. generation_all_best.txt: Smiles and fitness value for the best molecule encountered in every generation (iteration).
  4. init_mols.txt: List of molecules used to initialte JANUS.
  5. population_explore.txt: SMILES for all molecules from the exploration component of JANUS.
  6. population_local_search.txt: SMILES for all molecules from the exploitation component of JANUS.

Paper Results/Reproducibility:

Our code and results for each experiment in the paper can be found here:

Questions, problems?

Make a github issue 😄 . Please be as clear and descriptive as possible. Please feel free to reach out in person: (akshat[DOT]nigam[AT]mail[DOT]utoronto[DOT]ca, rob[DOT]pollice[AT]utoronto[DOT]ca)

License

Apache License 2.0

Comments
  • freeze_support runtime error with provided example

    freeze_support runtime error with provided example

    Hello, I'm trying out JANUS and if I just run the example inside the tests as provided I get

      File "/Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/multiprocessing/spawn.py", line 134, in _check_not_importing_main
        raise RuntimeError('''
    RuntimeError:
            An attempt has been made to start a new process before the
            current process has finished its bootstrapping phase.
    
            This probably means that you are not using fork to start your
            child processes and you have forgotten to use the proper idiom
            in the main module:
    
                if __name__ == '__main__':
                    freeze_support()
                    ...
    
            The "freeze_support()" line can be omitted if the program
            is not going to be frozen to produce an executable.
    

    This can be fixed by wrapping the creation and running of the JANUS agent and inside

    if __name__ == '__main__':
        torch.multiprocessing.freeze_support()
    

    see for a similar fix https://github.com/pytorch/pytorch/issues/5858#issuecomment-373950687

    I'm happy to submit a PR to fix if you like - it will be very simple

    opened by sofroniewn 4
  • Enquiring on multi-objective fitness function

    Enquiring on multi-objective fitness function

    Hi, I would like to ask if there are multiple objectives which I want the fitness function to fulfil, how would I write out the function because the example on the README.md is only for one objective (logP)?

    Thank you! :D

    opened by yipy0005 3
  • error in numpy/ list multiplication inside mutate_smi_list

    error in numpy/ list multiplication inside mutate_smi_list

    Hello, I am trying to run the provided example, but get the following error

    $ python ./example.py
        Unique and valid fragments generated: 107308
        Unique and valid fragments generated: 107308
    On generation 0/200
    /Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/site-packages/janus/janus.py:457: RuntimeWarning: overflow encountered in power
      prob_ = 1.0 / (3.0 ** ((F_50_val - fitness) / (F_50_val - F_25_val)) + 1)
        (Explr) Top Fitness: 15.811199999999957
        (Explr) Top Smile: CCCCCCCCCCCCCCCCOP(=O)(O)Oc1ccc(C=Cc2ccc(OP(=O)(O)OCCCCCCCCCCCCCCCC)cc2)cc1
    Traceback (most recent call last):
      File "/Users/nsofroniew/Documents/code/chem/janus/tests/./example.py", line 81, in <module>
      File "/Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/site-packages/janus/janus.py", line 317, in run
        mut_smi_loc = self.mutate_smi_list(smiles_local_search, "local")
      File "/Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/site-packages/janus/janus.py", line 137, in mutate_smi_list
        smi_list = smi_list * num_random_samples
    numpy.core._exceptions._UFuncNoLoopError: ufunc 'multiply' did not contain a loop with signature matching types (dtype('<U98'), dtype('int64')) -> None
    

    It looks like smi_list has become a numpy array, which is unintended and it should be a list. This can be fixed by making this line https://github.com/aspuru-guzik-group/JANUS/blob/a52e5994a108063e3fc1d692752cea0ff0240120/src/janus/janus.py#L137 be

        smi_list = list(smi_list) * num_random_samples
    

    There could be other, more desirable fixes that avoid this problem altogether. I am happy to submit a PR if this fix is desired though.

    opened by sofroniewn 2
  • Unhandled exceptions and KeyError

    Unhandled exceptions and KeyError

    I tried running JANUS.py but got a number of exceptions. In addition, the script terminated with a KeyError.

    Initial population obtained!
    Forming Fragments!
        Fragment creation: 0/10000
        Fragment creation: 1000/10000
        Fragment creation: 2000/10000
        Fragment creation: 3000/10000
        Fragment creation: 4000/10000
        Fragment creation: 5000/10000
        Fragment creation: 6000/10000
        Fragment creation: 7000/10000
        Fragment creation: 8000/10000
        Fragment creation: 9000/10000
    Process Process-5:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_1]'
    	SELFIES: [S][C][=N][N][=C][Branch1][Ring1][C][C][C][Branch1][#Branch1][O][C][Branch1][C][C][=O][C][Branch1][C][C][Branch1][C][C][C][N][N][N][Branch3_1][C][C][=C][=C][Branch1][C][N][C][=C][Ring1][#Branch1][C][#Branch1][N]
    Process Process-7:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 124, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Expl=Ring3]'
    	SELFIES: [C][Expl=Ring3][=C][Branch2][Ring1][=Branch1][C][=C][C][=C][Branch1][#C][C][=C][Ring1][=Branch1][C][=C][C][=C][C][=C][Ring1][=Branch1][Ring1][=C][F][C][Branch1][C][C][C][C][C][N][Branch1][=Branch2][S][Branch1][C][C][=Branch1][C][=O][=O][C][C][Ring1][#Branch2][C][N][Branch1][Branch1][C][C][C][C][C][C][C][C]
    Process Process-4:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch1_3]'
    	SELFIES: [C][C][=C][Branch1][=Branch1][C][C][=Ring1][=Branch1][Branch1_3][C][C][=C][C][=C][Branch1][C][C][=C][C][=C][Branch1][C][N][C][=N][Ring1][#Branch1][#Branch2][C][N][C][O][C][C][Ring1][=Branch1][C][Branch1][C][O][=C][C][=C][Ring1][=C][O][Ring1][P]
    Process Process-6:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_2]'
    	SELFIES: [C][C][=Branch1][#C][=C][C][=C][C][=Ring1][=Branch1][C][Branch1][C][F][Branch1][C][F][F][C][C][Branch1][C][C][=N][N][C][=Branch1][C][C][C][N][C][C][C][Branch1][C][N][C][C][Ring1][#Branch1][C][O][=C][C][Branch1][O][C][Branch3_2][C][N][C][C][O][C][C][Ring1][=Branch1][=O]
    Process Process-8:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch2_1]'
    	SELFIES: [C][=Branch1][C][=O][Branch1][C][O][C][N][C][=Branch1][C][=O][C][Branch2][Ring1][=Branch1][N][C][=Branch1][C][=O][C][Branch1][N][C][=C][C][=C][C][Branch2_1][Ring2][=N][Ring1][=Branch1][N][=N][O][C][Ring2][Ring1][C][S][C][C][=Ring2][Ring1][=Branch1][S][C][S][N][=C][Branch1][Ring2][N][=Ring1][Branch1][S][C][C][N]
    Process Process-11:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch2_3]'
    	SELFIES: [C][C][=C][C][Branch1][=C][C][N][Branch1][C][C][N][C][=Branch1][C][=O][C][S][C][C][C][Ring1][#Branch1][=C][C][=Ring1][O][C][=C][C][=C][C][=C][Ring1][=Branch1][O][C][=C][Branch2_3][Branch1]
    Process Process-10:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_3]'
    	SELFIES: [F][C][=C][C][=C][Branch2][Ring2][O][C][N][C][Branch2][Ring2][Ring2][C][Branch1][#C][C][C][=C][Branch1][=Branch2][C][=C][C][=C][C][=Branch1][C][=O][N][Branch1][C][C][Branch3_3][C][Branch1][C][F][C][=Ring1][#Branch1][F][=N][C][C][Ring1][C][N][C][C][N][C][C][Ring1][=Branch1][=C][=N][C][=Branch1][Branch1][=N][C][=Ring1][=Branch1][N][Branch1][C][C][C][=O][C][=C][Ring2][Ring1][=N]
    Process Process-9:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_3]'
    	SELFIES: [C][C][Branch1][#Branch2][C][=C][C][=Branch1][Ring2][=C][=Branch1][F][=N][C][=C][Branch2][Ring2][Branch1][N][Branch1][Branch2][C][=N][C][Ring1][=Branch1][=Ring1][=C][N][=C][C][=C][C][=C][Branch1][P][C][=Branch1][Ring2][=C][Ring1][=Branch1][C][Branch3_3][C][N][=C][C][=C][C][=Ring1][=Branch1][O][C][O]
    On generation 0/200
        (Explr) Top Fitness: 1.0
        (Explr) Top Smile: C=C1N=CC=C(N=CNc2ccc(N)cc2)N=C(C)[SH]1C
    Process Process-27:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_2]'
    	SELFIES: [C][O][=C][N][C][N][C][=Branch1][C][=O][N][Branch1][=Branch1][N+1][=Branch1][C][=O][O-1][C][Ring1][=Branch2][N][Ring1][N][O][C][=C][C][C][N][C][N][C][N][C][=C][C][=C][Branch1][C][F][C][Branch1][C][F][=C][Ring1][Branch2][=N][C][Branch1][C][C][Branch3_2][Branch1][=Branch1][C][Branch1][C][C][=O][S][Ring1][=Branch2][=C][C][=Ring1][#Branch1][N][C][N][C][C][=C][C][=C][C][=C][Ring1][=Branch1][C][N][=C][Branch1][=C][SH1][Branch1][C][C][C][=C][C][=C][C][=C][Ring1][=Branch1][=Branch1][C][=C][N][=C][C][=Ring1][#Branch2][C]
    Traceback (most recent call last):
      File "./JANUS.py", line 308, in 
        mut_smi_dict_local  = mut_smi_dict_local[population[top_idx]]
    KeyError: 'C=C1N=CC=C(N=CNc2ccc(N)cc2)N=C(C)[SH]1C'
    
    opened by PatWalters 2
  • multiprocessing in windows

    multiprocessing in windows

    Hi. I was run the code, but I met errors in all codes that used multiprocessing. As I know these errors came from the difference of OS.

    Since I use Windows, I wonder how to correct the code for Windows.

    Thanks.

    opened by gunwook12 1
  • "aux" folder name should be changed to make the repository compatible with Windows.

    It looks like "aux" is a reserved word in Windows and directory of this name cannot be used. This is causing error, when I try to clone the repository.

    opened by sptiwari 1
  • Question: How sensitive is the model to molecule initialization?

    Question: How sensitive is the model to molecule initialization?

    Hello, great work! I'm excited to try this out for a chemical design project I'm working on. One question that I had after reading the pre-print— how sensitive is the model to molecule initialization?

    I read that you can start JANUS with random molecules or provide it with defined molecules. Did you perform any tests on what happens if the best molecule's scaffold was ablated from the initial bank of molecules? And how much, if at all, does rational initialization improve over random molecular initialization? Does this relate back to being trapped in local minima, and would the choice of initialization help explore more chemical space?

    Thank you!

    question 
    opened by jrhorne 1
Releases(v1)
Owner
Aspuru-Guzik group repo
Aspuru-Guzik group repo
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Gesture recognition on Event Data

Event based Gesture Recognition Gesture recognition on Event Data usually involv

2 Feb 14, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022