NeuroGen: activation optimized image synthesis for discovery neuroscience

Overview

NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen is a framework for synthesizing images that control brain activations. Details can be found here: https://www.sciencedirect.com/science/article/pii/S1053811921010831. Supplementary Material can be found here: https://drive.google.com/drive/folders/1333yhTqTro6UgRS4sr6WAiR6a-J50PHK?usp=sharing

alt text

Requirements

  • Python 3.7
  • Pytorch 1.4.0
  • Other basic computing modules

Instructions

  1. output directory contains the trained encoding model for 8 subjects in the NSD dataset.
  2. encoding.py is called when loading the encoding model to NeuroGen.
  3. getROImask.py is used to get the ROI mask for the 24 used ROIs.
  4. getmaskedROI.py is used to get the voxel response within certain ROI.
  5. getmaskedROImean.py is used to get the mean voxel response within certain ROI.
  6. neurogen.py is the main script for NeuroGen, and can be called by

python neurogen.py --roi 1 --steps 1000 --gpu 0 --lr 0.01 --subj 1 --reptime 1 --truncation 1

  1. visualize.py contains some useful functions to save images and visualize them.
  2. pytorch_pretrained_biggan is available here: https://github.com/huggingface/pytorch-pretrained-BigGAN

Note: getROImask.py, getmaskedROI.py and getmaskedROImean.py deal with the NSD data which has not been released yet and are not necessary to run NeuroGen at this time. Paths in all scripts may need to change according to needs.

Citation

@article{gu2022neurogen,
title={NeuroGen: activation optimized image synthesis for discovery neuroscience},
author={Gu, Zijin and Jamison, Keith Wakefield and Khosla, Meenakshi and Allen, Emily J and Wu, Yihan and Naselaris, Thomas and Kay, Kendrick and Sabuncu, Mert R and Kuceyeski, Amy},
journal={NeuroImage},
volume={247},
pages={118812},
year={2022},
publisher={Elsevier}
}

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Antoine Caillon 589 Jan 02, 2023
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022