Multi-Glimpse Network With Python

Related tags

Deep LearningMGNet
Overview

Multi-Glimpse Network

Our code requires Python ≥ 3.8

Installation

For example, venv + pip:

$ python3 -m venv env
$ source env/bin/activate
(env) $ python3 -m pip install -r requirements.txt

Evaluation

Accuracy on clean images

  1. Create ImageNet100 from ImageNet (using symbolic links).
$ python3 tools/create_imagenet100.py tools/imagenet100.txt \
    /path/to/ImageNet /path/to/ImageNet100
  1. Download checkpoints from Google Drive.

  2. Test accuracy.

$ export dataset="--train_dir /path/to/ImageNet100/train \
    --val_dir /path/to/ImageNet100/val \
    --dataset imagenet --num_class 100"
# Baseline
$ python3 main.py $dataset --test --n_iter 1 --scale 1.0  --model resnet18 \
    --checkpoint resnet18_baseline
# Ours
$ python3 main.py $dataset --test --n_iter 4 --scale 2.33 --model resnet18 \
    --checkpoint resnet18_ours --alpha 0.6 --s 0.02

Add the flag --flop_count to count the approximate FLOPs for the inference of an image. (using fvcore)

Accuracy on adversarial attacks (PGD)

  1. Test adversarial accuracy.
# Baseline
$ python3 main.py $dataset --test --n_iter 1 --scale 1.0  --adv --step_k 10 \
    --model resnet18 --checkpoint resnet18_baseline
# Ours
$ python3 main.py $dataset --test --n_iter 4 --scale 2.33 --adv --step_k 10 \
    --model resnet18 --checkpoint resnet18_ours --alpha 0.6 --s 0.02

Accuracy on common corruptions

  1. Create ImageNet100-C from ImageNet-C (using symbolic links).
$ python3 tools/create_imagenet100c.py  \
    tools/imagenet100.txt  /path/to/ImageNet-C/ /path/to/ImageNet100-C/
  1. Test for a single corruption.
$ export dataset="--train_dir /path/to/ImageNet100/train \
    --val_dir /path/to/ImageNet100-C/pixelate/5 \
    --dataset imagenet --num_class 100"
# Baseline
$ python3 main.py $dataset --test --n_iter 1 --scale 1.0  --model resnet18 \
    --checkpoint resnet18_baseline
# Ours
$ python3 main.py $dataset --test --n_iter 4 --scale 2.33 --model resnet18 \
    --checkpoint resnet18_ours --alpha 0.6 --s 0.02
  1. A simple script to test all corruptions and collect results.
# Modify tools/eval_imagenet100c.py and run it to generate script
$ python3 tools/eval_imagenet100c.py /home2/ImageNet100-C/ > run.sh
# Evaluate
$ bash run.sh
# Collect results
$ python3 tools/collect_imagenet100c.py

Training

$ export dataset="--train_dir /path/to/ImageNet100/train \
    --val_dir /path/to/ImageNet100/val \
    --dataset imagenet --num_class 100"
# Baseline
$ python3 main.py $dataset --epochs 400 --n_iter 1 --scale 1.0 \
    --model resnet18 --gpu 0,1,2,3
# Ours
$ python3 main.py $dataset --epochs 400 --n_iter 4 --scale 2.33 \
    --model resnet18 --alpha 0.6 --s 0.02  --gpu 0,1,2,3

Check tensorboard for the logs. (When training with multiple gpus, the log value may be scaled by the number of gpus except for the validation accuracy)

tensorboard  --logdir=logs

Note that we left our exploration in the code for further study, e.g., self-supervised spatial guidance, dynamic gradient re-scaling operation.

Owner
LInkedIn https://www.linkedin.com/in/sia-huat-tan-2bb6911a5/
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

EDSR modelling A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repositor

Samuel Jackson 7 Nov 03, 2022
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Roman Solovyev 12 Jan 06, 2023