In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

Overview

cdf_att_classification

classes = {0: 'cat', 1: 'dog', 2: 'flower'}

In this project we use both Resnet and Self-attention layer for cdf-Classification. Specifically, For Resnet, we extract low level features from Convolutional Neural Network (CNN) trained on Dogcatflower_2 dataset(details show later).
We take inspiration from the Self-attention mechanism which is a prominent method in cv domain. We also use Grad-CAM algorithm to Visualize the gradient of the back propagation of the pretrain model to understand this network. The code is released for academic research use only. For commercial use, please contact [[email protected]].

Installation

Clone this repo.

git clone https://github.com/Alan-lab/cdf_classification
cd cdf_classification/

This code requires pytorch, python3.7, cv2, d2l. Please install it.

Dataset Preparation

For cdf_classification, the datasets must be downloaded beforehand. Please download them on the respective webpages. Please cite them if you use the data.

Preparing Cat and Dog Dataset. The dataset can be downloaded here.

Preparing flower Dataset. The dataset can be downloaded here.

You can also download Dogcatflower_2 dataset(made from above datasets) use the following link:

Link:https://pan.baidu.com/s/1ZcP_isbbRQBq9BHU6p_VtQ

key:oz7z

Training New Models

  1. Prepare your own dataset like this (https://github.com/Alan-lab/data/Dogcatflower_2).

  2. Training:

python main.py

model.pth will be extrated in the folder ./cdf_classification.

If av_test_acc < 0.75, model.pth will not save(d2l.train_ch6).

3.Predict

Prepare your valid dataset like this (https://github.com/Alan-lab/data/catsdogsflowers/valid1).

python Predict/predict.py

4.Class Activation Map The response size of the feature map is mapped to the original image, allowing readers to understand the effect of the model more intuitively. Prepare your picture like this (https://github.com/Alan-lab/data/Dogcatflower/test/flower/flower.1501.jpg).

python Viewer/Grad_CAM.py
  1. More details can be found in folder.

The Experimental Result

  1. Preformance
dataset Cat-acc Dog-acc flower-acc
Dogcatflower_2_train 96.2 88.7 93.6
Dogcatflower_2_test 72.7 69.2 89.7
catsdogsflowers_valid1 75.1 76.9 91.4
catsdogsflowers_valid2 75.5 73.5 92.9

2.Visualization

Postive sample fig1 fig2 fig3

Negative sample fig4

Multi-attention

show_attention

Acknowledgments

This work is mainly supported by (https://courses.d2l.ai/zh-v2/) and CSDN.

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Lailanqing ([email protected]).

This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

224 Jan 04, 2023