SeqTR: A Simple yet Universal Network for Visual Grounding

Overview

SeqTR

overview

This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling for visual grounding tasks under a novel point prediction paradigm.

Installation

Prerequisites

pip install -r requirements.txt
wget https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz -O en_vectors_web_lg-2.1.0.tar.gz
pip install en_vectors_web_lg-2.1.0.tar.gz

Then install SeqTR package in editable mode:

pip install -e .

Data Preparation

  1. Download our preprocessed json files including the merged dataset for pre-training, and DarkNet-53 model weights trained on MS-COCO object detection task.
  2. Download the train2014 images from mscoco or from Joseph Redmon's mscoco mirror, of which the download speed is faster than the official website.
  3. Download original Flickr30K images, ReferItGame images, and Visual Genome images.

The project structure should look like the following:

| -- SeqTR
     | -- data
        | -- annotations
            | -- flickr30k
                | -- instances.json
                | -- ix_to_token.pkl
                | -- token_to_ix.pkl
                | -- word_emb.npz
            | -- referitgame-berkeley
            | -- refcoco-unc
            | -- refcocoplus-unc
            | -- refcocog-umd
            | -- refcocog-google
            | -- pretraining-vg 
        | -- weights
            | -- darknet.weights
            | -- yolov3.weights
        | -- images
            | -- mscoco
                | -- train2014
                    | -- COCO_train2014_000000000072.jpg
                    | -- ...
            | -- saiaprtc12
                | -- 25.jpg
                | -- ...
            | -- flickr30k
                | -- 36979.jpg
                | -- ...
            | -- visual-genome
                | -- 2412112.jpg
                | -- ...
     | -- configs
     | -- seqtr
     | -- tools
     | -- teaser

Note that the darknet.weights excludes val/test images of RefCOCO/+/g datasets while yolov3.weights does not.

Training

Phrase Localization and Referring Expression Comprehension

We train SeqTR to perform grouning at bounding box level on a single V100 GPU. The following script performs the training:

python tools/train.py configs/seqtr/detection/seqtr_det_[DATASET_NAME].py --cfg-options ema=True

[DATASET_NAME] is one of "flickr30k", "referitgame-berkeley", "refcoco-unc", "refcocoplus-unc", "refcocog-umd", and "refcocog-google".

Referring Expression Segmentation

To train SeqTR to generate the target sequence of ground-truth mask, which is then assembled into the predicted mask by connecting the points, run the following script:

python tools/train.py configs/seqtr/segmentation/seqtr_mask_[DATASET_NAME].py --cfg-options ema=True

Note that instead of sampling 18 points and does not shuffle the sequence for RefCOCO dataset, for RefCOCO+ and RefCOCOg, we uniformly sample 12 points on the mask contour and randomly shffle the sequence with 20% percentage. Therefore, to execute the training on RefCOCO+/g datasets, modify num_ray at line 1 to 18 and model.head.shuffle_fraction to 0.2 at line 35, in configs/seqtr/segmentation/seqtr_mask_darknet.py.

Evaluation

python tools/test.py [PATH_TO_CONFIG_FILE] --load-from [PATH_TO_CHECKPOINT_FILE]

Pre-training + fine-tuning

We train SeqTR on 8 V100 GPUs while disabling Large Scale Jittering (LSJ) and Exponential Moving Average (EMA):

bash tools/dist_train.sh configs/seqtr/detection/seqtr_det_pretraining-vg.py 8

Models

RefCOCO RefCOCO+ RefCOCOg
val testA testB model val testA testB model val-g val-u val-u model
SeqTR on REC 81.23 85.00 76.08 68.82 75.37 58.78 - 71.35 71.58
SeqTR* on REC 83.72 86.51 81.24 71.45 76.26 64.88 71.50 74.86 74.21
SeqTR pre-trained+finetuned on REC 87.00 90.15 83.59 78.69 84.51 71.87 - 82.69 83.37
SeqTR on RES 67.26 69.79 64.12 54.14 58.93 48.19 - 55.67 55.64
SeqTR* denotes that its visual encoder is initialized with yolov3.weights, while the visual encoder of the rest are initialized with darknet.weights.

Contributing

Our codes are highly modularized and flexible to be extended to new architectures,. For instance, one can register new components such as head, fusion to promote your research ideas, or register new data augmentation techniques just as in mmdetection library. Feel free to play :-).

Citation

@article{zhu2022seqtr,
  title={SeqTR: A Simple yet Universal Network for Visual Grounding},
  author={Zhu, ChaoYang and Zhou, YiYi and Shen, YunHang and Luo, Gen and Pan, XingJia and Lin, MingBao and Chen, Chao and Cao, LiuJuan and Sun, XiaoShuai and Ji, RongRong},
  journal={arXiv preprint arXiv:2203.16265},
  year={2022}
}

Acknowledgement

Our code is built upon the open-sourced mmcv and mmdetection libraries.

Owner
seanZhuh
what/why then how
seanZhuh
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax ⚠️ Latest: Current repo is a complete version. But we delet

FishYuLi 341 Dec 23, 2022
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
MohammadReza Sharifi 27 Dec 13, 2022