Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Overview

Swin-Transformer

Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, please refer to "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"

This repo is an implementation of MegEngine version Swin-Transformer. This is also a showcase for training on GPU with less memory by leveraging MegEngine DTR technique.

There is also an official PyTorch implementation.

Usage

Install

  • Clone this repo:
git clone https://github.com/MegEngine/swin-transformer.git
cd swin-transformer
  • Install megengine==1.6.0
pip3 install megengine==1.6.0 -f https://megengine.org.cn/whl/mge.html

Training

To train a Swin Transformer using random data, run:

python3 -n <num-of-gpus-to-use> -b <batch-size-per-gpu> -s <num-of-train-steps> train_random.py

To train a Swin Transformer using AMP (Auto Mix Precision), run:

python3 -n <num-of-gpus-to-use> -b <batch-size-per-gpu> -s <num-of-train-steps> --mode mp train_random.py

To train a Swin Transformer using DTR in dynamic graph mode, run:

python3 -n <num-of-gpus-to-use> -b <batch-size-per-gpu> -s <num-of-train-steps> --dtr [--dtr-thd <eviction-threshold-of-dtr>] train_random.py

To train a Swin Transformer using DTR in static graph mode, run:

python3 -n <num-of-gpus-to-use> -b <batch-size-per-gpu> -s <num-of-train-steps> --trace --symbolic --dtr --dtr-thd <eviction-threshold-of-dtr> train_random.py

For example, to train a Swin Transformer with a single GPU using DTR in static graph mode with threshold=8GB and AMP, run:

python3 -n 1 -b 340 -s 10 --trace --symbolic --dtr --dtr-thd 8 --mode mp train_random.py

For more usage, run:

python3 train_random.py -h

Benchmark

  • Testing Devices
    • 2080Ti @ cuda-10.1-cudnn-v7.6.3-TensorRT-5.1.5.0 @ Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz
    • Reserve all CUDA memory by setting MGB_CUDA_RESERVE_MEMORY=1, in order to alleviate memory fragmentation problem
Settings Maximum Batch Size Speed(s/step) Throughput(images/s)
None 68 0.490 139
AMP 100 0.494 202
DTR in static graph mode 300 2.592 116
DTR in static graph mode + AMP 340 1.944 175

Acknowledgement

We are inspired by the Swin-Transformer repository, many thanks to microsoft!

Owner
旷视天元 MegEngine
旷视天元 MegEngine
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022