Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Overview

Swin-Transformer

Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, please refer to "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"

This repo is an implementation of MegEngine version Swin-Transformer. This is also a showcase for training on GPU with less memory by leveraging MegEngine DTR technique.

There is also an official PyTorch implementation.

Usage

Install

  • Clone this repo:
git clone https://github.com/MegEngine/swin-transformer.git
cd swin-transformer
  • Install megengine==1.6.0
pip3 install megengine==1.6.0 -f https://megengine.org.cn/whl/mge.html

Training

To train a Swin Transformer using random data, run:

python3 -n <num-of-gpus-to-use> -b <batch-size-per-gpu> -s <num-of-train-steps> train_random.py

To train a Swin Transformer using AMP (Auto Mix Precision), run:

python3 -n <num-of-gpus-to-use> -b <batch-size-per-gpu> -s <num-of-train-steps> --mode mp train_random.py

To train a Swin Transformer using DTR in dynamic graph mode, run:

python3 -n <num-of-gpus-to-use> -b <batch-size-per-gpu> -s <num-of-train-steps> --dtr [--dtr-thd <eviction-threshold-of-dtr>] train_random.py

To train a Swin Transformer using DTR in static graph mode, run:

python3 -n <num-of-gpus-to-use> -b <batch-size-per-gpu> -s <num-of-train-steps> --trace --symbolic --dtr --dtr-thd <eviction-threshold-of-dtr> train_random.py

For example, to train a Swin Transformer with a single GPU using DTR in static graph mode with threshold=8GB and AMP, run:

python3 -n 1 -b 340 -s 10 --trace --symbolic --dtr --dtr-thd 8 --mode mp train_random.py

For more usage, run:

python3 train_random.py -h

Benchmark

  • Testing Devices
    • 2080Ti @ cuda-10.1-cudnn-v7.6.3-TensorRT-5.1.5.0 @ Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz
    • Reserve all CUDA memory by setting MGB_CUDA_RESERVE_MEMORY=1, in order to alleviate memory fragmentation problem
Settings Maximum Batch Size Speed(s/step) Throughput(images/s)
None 68 0.490 139
AMP 100 0.494 202
DTR in static graph mode 300 2.592 116
DTR in static graph mode + AMP 340 1.944 175

Acknowledgement

We are inspired by the Swin-Transformer repository, many thanks to microsoft!

Owner
旷视天元 MegEngine
旷视天元 MegEngine
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Python Blood Vessel Topology Analysis

Python Blood Vessel Topology Analysis This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at ht

6 Nov 15, 2022
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Pytorch tutorials for Neural Style transfert

PyTorch Tutorials This tutorial is no longer maintained. Please use the official version: https://pytorch.org/tutorials/advanced/neural_style_tutorial

Alexis David Jacq 135 Jun 26, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022