StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

Overview

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

Open In Colab arXiv

[Project Website] [Replicate.ai Project]

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators
Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, Daniel Cohen-Or

Abstract:
Can a generative model be trained to produce images from a specific domain, guided by a text prompt only, without seeing any image? In other words: can an image generator be trained blindly? Leveraging the semantic power of large scale Contrastive-Language-Image-Pre-training (CLIP) models, we present a text-driven method that allows shifting a generative model to new domains, without having to collect even a single image from those domains. We show that through natural language prompts and a few minutes of training, our method can adapt a generator across a multitude of domains characterized by diverse styles and shapes. Notably, many of these modifications would be difficult or outright impossible to reach with existing methods. We conduct an extensive set of experiments and comparisons across a wide range of domains. These demonstrate the effectiveness of our approach and show that our shifted models maintain the latent-space properties that make generative models appealing for downstream tasks.

Description

This repo contains the official implementation of StyleGAN-NADA, a Non-Adversarial Domain Adaptation for image generators. At a high level, our method works using two paired generators. We initialize both using a pre-trained model (for example, FFHQ). We hold one generator constant and train the other by demanding that the direction between their generated images in clip space aligns with some given textual direction.

The following diagram illustrates the process:

We set up a colab notebook so you can play with it yourself :) Let us know if you come up with any cool results!

We've also included inversion in the notebook (using ReStyle) so you can use the paired generators to edit real images. Most edits will work well with the pSp version of ReStyle, which also allows for more accurate reconstructions. In some cases, you may need to switch to the e4e based encoder for better editing at the cost of reconstruction accuracy.

Updates

03/10/2021 (A) Interpolation video script now supports InterfaceGAN based-editing.
03/10/2021 (B) Updated the notebook with support for target style images.
03/10/2021 (C) Added replicate.ai support. You can now run inference or generate videos without needing to setup anything or work with code.
22/08/2021 Added a script for generating cross-domain interpolation videos (similar to the top video in the project page).
21/08/2021 (A) Added the ability to mimic styles from an image set. See the usage section.
21/08/2021 (B) Added dockerized UI tool.
21/08/2021 (C) Added link to drive with pre-trained models.

Generator Domain Adaptation

We provide many examples of converted generators in our project page. Here are a few samples:

Setup

The code relies on the official implementation of CLIP, and the Rosinality pytorch implementation of StyleGAN2.

Requirements

  • Anaconda
  • Pretrained StyleGAN2 generator (can be downloaded from here). You can also download a model from here and convert it with the provited script. See the colab notebook for examples.

In addition, run the following commands:

conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=<CUDA_VERSION>
pip install ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git

Usage

To convert a generator from one domain to another, use the colab notebook or run the training script in the ZSSGAN directory:

python train.py --size 1024 
                --batch 2 
                --n_sample 4 
                --output_dir /path/to/output/dir 
                --lr 0.002 
                --frozen_gen_ckpt /path/to/stylegan2-ffhq-config-f.pt 
                --iter 301 
                --source_class "photo" 
                --target_class "sketch" 
                --auto_layer_k 18
                --auto_layer_iters 1 
                --auto_layer_batch 8 
                --output_interval 50 
                --clip_models "ViT-B/32" "ViT-B/16" 
                --clip_model_weights 1.0 1.0 
                --mixing 0.0
                --save_interval 150

Where you should adjust size to match the size of the pre-trained model, and the source_class and target_class descriptions control the direction of change. For an explenation of each argument (and a few additional options), please consult ZSSGAN/options/train_options.py. For most modifications these default parameters should be good enough. See the colab notebook for more detailed directions.

21/08/2021 Instead of using source and target texts, you can now target a style represented by a few images. Simply replace the --source_class and --target_class options with:

--style_img_dir /path/to/img/dir

where the directory should contain a few images (png, jpg or jpeg) with the style you want to mimic. There is no need to normalize or preprocess the images in any form.

Some results of converting an FFHQ model using children's drawings, LSUN Cars using Dali paintings and LSUN Cat using abstract sketches:

Pre-Trained Models

We provide a Google Drive containing an assortment of models used in the paper, tweets and other locations. If you want access to a model not yet included in the drive, please let us know.

Docker

We now provide a simple dockerized interface for training models. The UI currently supports a subset of the colab options, but does not require repeated setups.

In order to use the docker version, you must have a CUDA compatible GPU and must install nvidia-docker and docker-compose first.

After cloning the repo, simply run:

cd StyleGAN-nada/
docker-compose up
  • Downloading the docker for the first time may take a few minutes.
  • While the docker is running, the UI should be available under http://localhost:8888/
  • The UI was tested using an RTX3080 GPU with 16GB of RAM. Smaller GPUs may run into memory limits with large models.

If you find the UI useful and want it expended to allow easier access to saved models, support for real image editing etc., please let us know.

Editing Video

In order to generate a cross-domain editing video (such as the one at the top of our project page), prepare a set of edited latent codes in the original domain and run the following generate_videos.py script in the ZSSGAN directory:

python generate_videos.py --ckpt /model_dir/pixar.pt             \
                                 /model_dir/ukiyoe.pt            \
                                 /model_dir/edvard_munch.pt      \
                                 /model_dir/botero.pt            \
                          --out_dir /output/video/               \
                          --source_latent /latents/latent000.npy \
                          --target_latents /latents/
  • The script relies on ffmpeg to function. On linux it can be installed by running sudo apt install ffmpeg
  • The argument to --ckpt is a list of model checkpoints used to fill the grid.
    • The number of models must be a perfect square, e.g. 1, 4, 9...
  • The argument to --target_latents can be either a directory containing a set of .npy w-space latent codes, or a list of individual files.
  • Please see the script for more details.

We provide example latent codes for the same identity used in our video. If you want to generate your own, we recommend using StyleCLIP, InterFaceGAN, StyleFlow, GANSpace or any other latent space editing method.

03/10/2021 We now provide editing directions for use in video generation. To use the built-in directions, omit the --target_latents argument. You can use specific editing directions from the available list by passing them with the --edit_directions flag. See generate_videos.py for more information.

Related Works

The concept of using CLIP to guide StyleGAN generation results was introduced in StyleCLIP (Patashnik et al.).

We invert real images into the GAN's latent space using ReStyle (Alaluf et al.).

Editing directions for video generation were taken from Anycost GAN (Lin et al.).

Citation

If you make use of our work, please cite our paper:

@misc{gal2021stylegannada,
      title={StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators}, 
      author={Rinon Gal and Or Patashnik and Haggai Maron and Gal Chechik and Daniel Cohen-Or},
      year={2021},
      eprint={2108.00946},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Additional examples:

Our method can be used to enable out-of-domain editing of real images, using pre-trained, off-the-shelf inversion networks. Here are a few more examples:

simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021