[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Overview

Counterfactual VQA (CF-VQA)

This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in CVPR 2021. This code is implemented as a fork of RUBi.

CF-VQA is proposed to capture and mitigate language bias in VQA from the view of causality. CF-VQA (1) captures the language bias as the direct causal effect of questions on answers, and (2) reduces the language bias by subtracting the direct language effect from the total causal effect.

If you find this paper helps your research, please kindly consider citing our paper in your publications.

@inproceedings{niu2020counterfactual,
  title={Counterfactual VQA: A Cause-Effect Look at Language Bias},
  author={Niu, Yulei and Tang, Kaihua and Zhang, Hanwang and Lu, Zhiwu and Hua, Xian-Sheng and Wen, Ji-Rong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Summary

Installation

1. Setup and dependencies

Install Anaconda or Miniconda distribution based on Python3+ from their downloads' site.

conda create --name cfvqa python=3.7
source activate cfvqa
pip install -r requirements.txt

2. Download datasets

Download annotations, images and features for VQA experiments:

bash cfvqa/datasets/scripts/download_vqa2.sh
bash cfvqa/datasets/scripts/download_vqacp2.sh

Quick start

Train a model

The boostrap/run.py file load the options contained in a yaml file, create the corresponding experiment directory and start the training procedure. For instance, you can train our best model on VQA-CP v2 (CFVQA+SUM+SMRL) by running:

python -m bootstrap.run -o cfvqa/options/vqacp2/smrl_cfvqa_sum.yaml

Then, several files are going to be created in logs/vqacp2/smrl_cfvqa_sum/:

  • [options.yaml] (copy of options)
  • [logs.txt] (history of print)
  • [logs.json] (batchs and epochs statistics)
  • [_vq_val_oe.json] (statistics for the language-prior based strategy, e.g., RUBi)
  • [_cfvqa_val_oe.json] (statistics for CF-VQA)
  • [_q_val_oe.json] (statistics for language-only branch)
  • [_v_val_oe.json] (statistics for vision-only branch)
  • [_all_val_oe.json] (statistics for the ensembled branch)
  • ckpt_last_engine.pth.tar (checkpoints of last epoch)
  • ckpt_last_model.pth.tar
  • ckpt_last_optimizer.pth.tar

Many options are available in the options directory. CFVQA represents the complete causal graph while cfvqas represents the simplified causal graph.

Evaluate a model

There is no test set on VQA-CP v2, our main dataset. The evaluation is done on the validation set. For a model trained on VQA v2, you can evaluate your model on the test set. In this example, boostrap/run.py load the options from your experiment directory, resume the best checkpoint on the validation set and start an evaluation on the testing set instead of the validation set while skipping the training set (train_split is empty). Thanks to --misc.logs_name, the logs will be written in the new logs_predicate.txt and logs_predicate.json files, instead of being appended to the logs.txt and logs.json files.

python -m bootstrap.run \
-o ./logs/vqacp2/smrl_cfvqa_sum/options.yaml \
--exp.resume last \
--dataset.train_split ''\
--dataset.eval_split val \
--misc.logs_name test 

Useful commands

Use a specific GPU

For a specific experiment:

CUDA_VISIBLE_DEVICES=0 python -m boostrap.run -o cfvqa/options/vqacp2/smrl_cfvqa_sum.yaml

For the current terminal session:

export CUDA_VISIBLE_DEVICES=0

Overwrite an option

The boostrap.pytorch framework makes it easy to overwrite a hyperparameter. In this example, we run an experiment with a non-default learning rate. Thus, I also overwrite the experiment directory path:

python -m bootstrap.run -o cfvqa/options/vqacp2/smrl_cfvqa_sum.yaml \
--optimizer.lr 0.0003 \
--exp.dir logs/vqacp2/smrl_cfvqa_sum_lr,0.0003

Resume training

If a problem occurs, it is easy to resume the last epoch by specifying the options file from the experiment directory while overwritting the exp.resume option (default is None):

python -m bootstrap.run -o logs/vqacp2/smrl_cfvqa_sum/options.yaml \
--exp.resume last

Acknowledgment

Special thanks to the authors of RUBi, BLOCK, and bootstrap.pytorch, and the datasets used in this research project.

Owner
Yulei Niu
Yulei Niu
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023