Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Overview

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementation)

Teaser

Paper

Pan Zhang, Bo Zhang, Ting Zhang, Dong Chen, Yong Wang, and Fang Wen.

Compare

Abstract

Self-training is a competitive approach in domain adaptive segmentation, which trains the network with the pseudo labels on the target domain. However inevitably, the pseudo labels are noisy and the target features are dispersed due to the discrepancy between source and target domains. In this paper, we rely on representative prototypes, the feature centroids of classes, to address the two issues for unsupervised domain adaptation. In particular, we take one step further and exploit the feature distances from prototypes that provide richer information than mere prototypes. Specifically, we use it to estimate the likelihood of pseudo labels to facilitate online correction in the course of training. Meanwhile, we align the prototypical assignments based on relative feature distances for two different views of the same target, producing a more compact target feature space. Moreover, we find that distilling the already learned knowledge to a self-supervised pretrained model further boosts the performance. Our method shows tremendous performance advantage over state-of-the-art methods.

Installation

Install dependencies:

pip install -r requirements.txt

Data Preparation

Download Cityscapes, GTA5 and SYNTHIA-RAND-CITYSCAPES.

Inference Using Pretrained Model

1) GTA5 -> Cityscapes

Download the pretrained model (57.5 mIoU) and save it in ./pretrained/gta2citylabv2_stage3. Then run the command

python test.py --bn_clr --student_init simclr --resume ./pretrained/gta2citylabv2_stage3/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl
2) SYNTHIA -> Cityscapes

Download the pretrained model (55.5 mIoU, 62.0 mIoU for 16, 13 categories respectively) and save it in ./pretrained/syn2citylabv2_stage3. Then run the command

python test.py --bn_clr --student_init simclr --n_class 16 --resume ./pretrained/syn2citylabv2_stage3/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl

Training

To reproduce the performance, you need 4 GPUs with no less than 16G memory.

1) GTA5 -> Cityscapes
  • Stage1. Download warm-up model (43.3 mIoU), and save it in ./pretrained/gta2citylabv2_warmup/.

    • Generate soft pseudo label.
    python generate_pseudo_label.py --name gta2citylabv2_warmup_soft --soft --resume_path ./pretrained/gta2citylabv2_warmup/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast 
    • Calculate initial prototypes.
    python calc_prototype.py --resume_path ./pretrained/gta2citylabv2_warmup/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl
    • Train stage1.
    python train.py --name gta2citylabv2_stage1Denoise --used_save_pseudo --ema --proto_rectify --moving_prototype --path_soft Pseudo/gta2citylabv2_warmup_soft --resume_path ./pretrained/gta2citylabv2_warmup/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --proto_consistW 10 --rce --regular_w 0.1
  • Stage2. This stage needs well-trained model from stage1 as teacher model. You can get it by above command or download the pretrained model stage1 model(53.7 mIoU) and save it in ./pretrained/gta2citylabv2_stage1Denoise/ (path of resume_path). Besides, download the pretrained model simclr model and save it to ./pretrained/simclr/.

    • Generate pseudo label.
    python generate_pseudo_label.py --name gta2citylabv2_stage1Denoise --flip --resume_path ./logs/gta2citylabv2_stage1Denoise/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast
    • Train stage2.
    python train.py --name gta2citylabv2_stage2 --stage stage2 --used_save_pseudo --path_LP Pseudo/gta2citylabv2_stage1Denoise --resume_path ./logs/gta2citylabv2_stage1Denoise/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --S_pseudo 1 --threshold 0.95 --distillation 1 --finetune --lr 6e-4 --student_init simclr --bn_clr --no_resume
  • Stage3. This stage needs well-trained model from stage2 as the teacher model. You can get it with the above command or download the pretrained model stage2 model(56.9 mIoU) and save it in ./pretrained/gta2citylabv2_stage2/ (path of resume_path).

    • Generate pseudo label.
    python generate_pseudo_label.py --name gta2citylabv2_stage2 --flip --resume_path ./logs/gta2citylabv2_stage2/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast --bn_clr --student_init simclr
    • Train stage3.
    python train.py --name gta2citylabv2_stage3 --stage stage3 --used_save_pseudo --path_LP Pseudo/gta2citylabv2_stage2 --resume_path ./logs/gta2citylabv2_stage2/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --S_pseudo 1 --threshold 0.95 --distillation 1 --finetune --lr 6e-4 --student_init simclr --bn_clr --ema_bn
2) SYNTHIA -> Cityscapes
  • Stage1. Download warmup model(41.4 mIoU), save it in ./pretrained/syn2citylabv2_warmup/.

    • Generate soft pseudo label.
    python generate_pseudo_label.py --name syn2citylabv2_warmup_soft --soft --n_class 16 --resume_path ./pretrained/syn2citylabv2_warmup/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast 
    • Calculate initial prototypes.
    python calc_prototype.py --resume_path ./pretrained/syn2citylabv2_warmup/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --n_class 16
    • Train stage1.
    python train.py --name syn2citylabv2_stage1Denoise --src_dataset synthia --n_class 16 --src_rootpath src_rootpath --used_save_pseudo --path_soft Pseudo/syn2citylabv2_warmup_soft --ema --proto_rectify --moving_prototype --proto_consistW 10 --resume_path ./pretrained/syn2citylabv2_warmup/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --rce
  • Stage2. This stage needs well-trained model from stage1 as teacher model. You can get it by above command or download released pretrained stage1 model(51.9 mIoU) and save it in ./pretrained/syn2citylabv2_stage1Denoise/ (path of resume_path).

    • Generate pseudo label.
    python generate_pseudo_label.py --name syn2citylabv2_stage1Denoise --flip --resume_path ./logs/syn2citylabv2_stage2/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast --n_class 16
    • Train stage2.
    python train.py --name syn2citylabv2_stage2 --stage stage2 --src_dataset synthia --n_class 16 --src_rootpath src_rootpath --used_save_pseudo --path_LP Pseudo/syn2citylabv2_stage1Denoise --resume_path ./logs/syn2citylabv2_stage2/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --S_pseudo 1 --threshold 0.95 --distillation 1 --finetune --lr 6e-4 --student_init simclr --bn_clr --no_resume
  • Stage3. This stage needs well-trained model from stage2 as teacher model. You can get it by above command or download released pretrained stage2 model(54.6 mIoU) and save it in ./pretrained/stn2citylabv2_stage2/ (path of resume_path).

    • Generate pseudo label.
    python generate_pseudo_label.py --name syn2citylabv2_stage2 --flip --resume_path ./logs/syn2citylabv2_stage2/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast --bn_clr --student_init simclr --n_class 16
    • Train stage3.
    python train.py --name syn2citylabv2_stage3 --stage stage3 --src_dataset synthia --n_class 16 --src_rootpath src_rootpath --used_save_pseudo --path_LP Pseudo/syn2citylabv2_stage2 --resume_path ./logs/syn2citylabv2_stage2/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --S_pseudo 1 --threshold 0.95 --distillation 1 --finetune --lr 6e-4 --student_init simclr --bn_clr --ema_bn

Citation

If you like our work and use the code or models for your research, please cite our work as follows.

@article{zhang2021prototypical,
    title={Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation},
    author={Zhang, Pan and Zhang, Bo and Zhang, Ting and Chen, Dong and Wang, Yong and Wen, Fang},
    journal={arXiv preprint arXiv:2101.10979},
    year={2021}
}

License

The codes and the pretrained model in this repository are under the MIT license as specified by the LICENSE file.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Acknowledgments

This code is heavily borrowed from CAG_UDA.
We also thank Jiayuan Mao for his Synchronized Batch Normalization code.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022