Combinatorial model of ligand-receptor binding

Overview

Combinatorial model of ligand-receptor binding

The binding of ligands to receptors is the starting point for many import signal pathways within a cell, but in contrast to the specificity of the processes that follow such bindings, the bindings themselves are often non-specific. Namely, a single type of ligand can often bind to multiple receptors beyond the single receptor to which it binds optimally. This property of ligand-receptor binding naturally leads to a simple question:

If a collection of ligands can bind non-specifically to a collection of receptors, but each ligand type has a specific receptor to which it binds most strongly, under what thermal conditions will all ligands bind to their optimal sites?


Depiction of various ligand types binding optimally and sub-optimally to receptors

In this repository, we collect all the simulations that helped us explore this question in the associated paper. In particular, to provide a conceptual handle on the features of optimal and sub-optimal bindings of ligands, we considered an analogous model of colors binding to a grid.


Partially correct and completely correct binding for the image

In the same way ligands could have certain receptors to which they bind optimally (even though such ligands could bind to many others), each colored square has a certain correct location in the image grid but could exist anywhere on the grid. We have the correct locations form a simple image so that when simulating the system it is clear by eye whether the system has settled into its completely correct configuration. In all of the notebooks in this repository, we use this system of grid assembly as a toy model to outline the properties of our ligand-receptor binding model.

Reproducing figures and tables

Each notebook reproduces a figure in the paper.

Simulation Scheme

For these simulations, we needed to define a microstate, the probability of transitions between microstates, and the types of transitions between microstates.

Microstate Definition

A microstate of our system was defined by two lists: one representing the collection of unbound particles, and the other representing particles bound to their various binding sites. The particles themselves were denoted by unique strings and came in multiple copies according to the system parameters. For example, a system with R = 3 types of particles with n1 = 2, n2 = 3, and n3 = 1 could have a microstate defined by unbound_particles = [A2, A2, A3] and bound_particles = [A1, −, A2, −, A1, −] where “−” in the bound list stands for an empty binding site.

Since the number of optimally bound particles was an important observable for the system, we also needed to define the optimal binding configuration for the microstates. Such an optimal configuration was chosen at the start of the simulation and was defined as a microstate with no unbound particles and all the bound particles in a particular order. For example, using the previous example, we might define the optimal binding configuration as optimal_bound_config = [A1, A1, A2, A2, A2, A3], in which case the number of optimally bound particles of each type in bound_particles = [A1,−,A2,−,A1,−] is m1 = 1, m2 = 1, and m3 = 0. The number of bound particles of each type is k_1 = 2, k_2 = 1, and k_3 = 0. We note that the order of the elements in unbound_particles is not physically important, but, since the number of optimally bound particles is an important observable, the order of the elements in bound_particles is physically important.

For these simulations, the energy of a microstate with k[i] bound particles of type i and m[i] optimally bound particles of type i was defined as

E(k, m) = Sum^R_i (m[i] log delta[i] + k[i] log gamma[i])

where k=[k1,k2,...,,kR] and m=[m1,m2,...,mR], gamma[i] is the binding affinity, and delta[i] is the optimal binding affinity of particle of type i. For transitioning between microstates, we allowed for three different transition types: Particle binding to a site; particle unbinding from a site; permutation of two particles in two different binding sites. Particle binding and unbinding both occur in real physical systems, but permutation of particle positions is unphysical. This latter transition type was included to ensure an efficient-in-time sampling of the state space. (Note: For simulations of equilibrium systems it is valid to include physically unrealistic transition types as long as the associated transition probabilities obey detailed balance.)

Transition Probability

At each time step, we randomly selected one of the three transition types with (equal probability for each type), then randomly selected the final proposed microstate given the initial microstate, and finally computed the probability that said proposal was accepted. By the Metropolis Hastings algorithm, the probability that the transition is accepted is given by

prob(init → fin) = min{1, exp(- β(Efin −Einit))*π(fin → init)/π(init → fin) }

where Einit is the energy of the initial microstate state and Efin is the energy of the final microstate. The quantity π(init → fin) is the probability of randomly proposing the final microstate state given the initial microstate state and π(fin → init) is defined similarly. The ratio π(fin → init)/π(init → fin) varied for each transition type. Below we give examples of these transitions along with the value of this ratio in each case. In the following, Nf and Nb represent the number of free particles and the number of bound particles, respectively, before the transition.

Types of Transitions

  • Particle Binding to Site: One particle was randomly chosen from the unbound_particles list and placed in a randomly chosen empty site in the bound_particles list. π(fin → init)/π(init → fin) = Nf^2/(Nb +1).

Example: unbound_particles = [A2, A2, A3] and bound_particles = [A1, −, A2, −, A1, −]unbound_particles = [A2, A3] and bound_particles = [A1, A2, A2, −, A1, −]; π(fin → init)/π(init → fin) = 9/4

  • Particle Unbinding from Site: One particle was randomly chosen from the bound_particles list and placed in the unbound_particles list. π(fin → init)/π(init → fin) = Nb/(Nf + 1)^2.

Example: unbound_particles = [A2, A2, A3] and bound_particles = [A1, −, A2, −, A1, −]unbound_particles = [A2, A2, A3, A2] and bound_particles = [A1, −, −, −, A1, −]; π(fin → init)/π(init → fin) = 3/16

  • Particle Permutation: Two randomly selected particles in the bound_particles list switched positions. π(fin → init)/π(init → fin) = 1.

Example: unbound_particles = [A2, A2, A3] and bound_particles = [A1, −, A2, −, A1, −]unbound_particles = [A2, A2, A3] and bound_particles = [A2, −, A1, −, A1, −]; π(fin → init)/π(init → fin) = 1

For impossible transitions (e.g., particle binding when there are no free particles) the probability for accepting the transition was set to zero. At each temperature, the simulation was run for anywhere from 10,000 to 30,000 time steps (depending on convergence properties), of which the last 2.5% of steps were used to compute ensemble averages of ⟨k⟩ and ⟨m⟩. These simulations were repeated five times, and each point in Fig. 6b, Fig. 7b, Fig. 8b, and Fig. 9 in the paper represents the average ⟨k⟩ and ⟨m⟩ over these five runs.

References

[1] Mobolaji Williams. "Combinatorial model of ligand-receptor binding." 2022. [http://arxiv.org/abs/2201.09471]


@article{williams2022comb,
  title={Combinatorial model of ligand-receptor binding},
  author={Williams, Mobolaji},
  journal={arXiv preprint arXiv:2201.09471},
  year={2022}
}
Owner
Mobolaji Williams
Mobolaji Williams
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.

An Empirical Investigation of 3D Anomaly Detection and Segmentation Project | Paper Official PyTorch Implementation for the "An Empirical Investigatio

Eliahu Horwitz 55 Dec 14, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022