Combinatorial model of ligand-receptor binding

Overview

Combinatorial model of ligand-receptor binding

The binding of ligands to receptors is the starting point for many import signal pathways within a cell, but in contrast to the specificity of the processes that follow such bindings, the bindings themselves are often non-specific. Namely, a single type of ligand can often bind to multiple receptors beyond the single receptor to which it binds optimally. This property of ligand-receptor binding naturally leads to a simple question:

If a collection of ligands can bind non-specifically to a collection of receptors, but each ligand type has a specific receptor to which it binds most strongly, under what thermal conditions will all ligands bind to their optimal sites?


Depiction of various ligand types binding optimally and sub-optimally to receptors

In this repository, we collect all the simulations that helped us explore this question in the associated paper. In particular, to provide a conceptual handle on the features of optimal and sub-optimal bindings of ligands, we considered an analogous model of colors binding to a grid.


Partially correct and completely correct binding for the image

In the same way ligands could have certain receptors to which they bind optimally (even though such ligands could bind to many others), each colored square has a certain correct location in the image grid but could exist anywhere on the grid. We have the correct locations form a simple image so that when simulating the system it is clear by eye whether the system has settled into its completely correct configuration. In all of the notebooks in this repository, we use this system of grid assembly as a toy model to outline the properties of our ligand-receptor binding model.

Reproducing figures and tables

Each notebook reproduces a figure in the paper.

Simulation Scheme

For these simulations, we needed to define a microstate, the probability of transitions between microstates, and the types of transitions between microstates.

Microstate Definition

A microstate of our system was defined by two lists: one representing the collection of unbound particles, and the other representing particles bound to their various binding sites. The particles themselves were denoted by unique strings and came in multiple copies according to the system parameters. For example, a system with R = 3 types of particles with n1 = 2, n2 = 3, and n3 = 1 could have a microstate defined by unbound_particles = [A2, A2, A3] and bound_particles = [A1, −, A2, −, A1, −] where “−” in the bound list stands for an empty binding site.

Since the number of optimally bound particles was an important observable for the system, we also needed to define the optimal binding configuration for the microstates. Such an optimal configuration was chosen at the start of the simulation and was defined as a microstate with no unbound particles and all the bound particles in a particular order. For example, using the previous example, we might define the optimal binding configuration as optimal_bound_config = [A1, A1, A2, A2, A2, A3], in which case the number of optimally bound particles of each type in bound_particles = [A1,−,A2,−,A1,−] is m1 = 1, m2 = 1, and m3 = 0. The number of bound particles of each type is k_1 = 2, k_2 = 1, and k_3 = 0. We note that the order of the elements in unbound_particles is not physically important, but, since the number of optimally bound particles is an important observable, the order of the elements in bound_particles is physically important.

For these simulations, the energy of a microstate with k[i] bound particles of type i and m[i] optimally bound particles of type i was defined as

E(k, m) = Sum^R_i (m[i] log delta[i] + k[i] log gamma[i])

where k=[k1,k2,...,,kR] and m=[m1,m2,...,mR], gamma[i] is the binding affinity, and delta[i] is the optimal binding affinity of particle of type i. For transitioning between microstates, we allowed for three different transition types: Particle binding to a site; particle unbinding from a site; permutation of two particles in two different binding sites. Particle binding and unbinding both occur in real physical systems, but permutation of particle positions is unphysical. This latter transition type was included to ensure an efficient-in-time sampling of the state space. (Note: For simulations of equilibrium systems it is valid to include physically unrealistic transition types as long as the associated transition probabilities obey detailed balance.)

Transition Probability

At each time step, we randomly selected one of the three transition types with (equal probability for each type), then randomly selected the final proposed microstate given the initial microstate, and finally computed the probability that said proposal was accepted. By the Metropolis Hastings algorithm, the probability that the transition is accepted is given by

prob(init → fin) = min{1, exp(- β(Efin −Einit))*π(fin → init)/π(init → fin) }

where Einit is the energy of the initial microstate state and Efin is the energy of the final microstate. The quantity π(init → fin) is the probability of randomly proposing the final microstate state given the initial microstate state and π(fin → init) is defined similarly. The ratio π(fin → init)/π(init → fin) varied for each transition type. Below we give examples of these transitions along with the value of this ratio in each case. In the following, Nf and Nb represent the number of free particles and the number of bound particles, respectively, before the transition.

Types of Transitions

  • Particle Binding to Site: One particle was randomly chosen from the unbound_particles list and placed in a randomly chosen empty site in the bound_particles list. π(fin → init)/π(init → fin) = Nf^2/(Nb +1).

Example: unbound_particles = [A2, A2, A3] and bound_particles = [A1, −, A2, −, A1, −]unbound_particles = [A2, A3] and bound_particles = [A1, A2, A2, −, A1, −]; π(fin → init)/π(init → fin) = 9/4

  • Particle Unbinding from Site: One particle was randomly chosen from the bound_particles list and placed in the unbound_particles list. π(fin → init)/π(init → fin) = Nb/(Nf + 1)^2.

Example: unbound_particles = [A2, A2, A3] and bound_particles = [A1, −, A2, −, A1, −]unbound_particles = [A2, A2, A3, A2] and bound_particles = [A1, −, −, −, A1, −]; π(fin → init)/π(init → fin) = 3/16

  • Particle Permutation: Two randomly selected particles in the bound_particles list switched positions. π(fin → init)/π(init → fin) = 1.

Example: unbound_particles = [A2, A2, A3] and bound_particles = [A1, −, A2, −, A1, −]unbound_particles = [A2, A2, A3] and bound_particles = [A2, −, A1, −, A1, −]; π(fin → init)/π(init → fin) = 1

For impossible transitions (e.g., particle binding when there are no free particles) the probability for accepting the transition was set to zero. At each temperature, the simulation was run for anywhere from 10,000 to 30,000 time steps (depending on convergence properties), of which the last 2.5% of steps were used to compute ensemble averages of ⟨k⟩ and ⟨m⟩. These simulations were repeated five times, and each point in Fig. 6b, Fig. 7b, Fig. 8b, and Fig. 9 in the paper represents the average ⟨k⟩ and ⟨m⟩ over these five runs.

References

[1] Mobolaji Williams. "Combinatorial model of ligand-receptor binding." 2022. [http://arxiv.org/abs/2201.09471]


@article{williams2022comb,
  title={Combinatorial model of ligand-receptor binding},
  author={Williams, Mobolaji},
  journal={arXiv preprint arXiv:2201.09471},
  year={2022}
}
Owner
Mobolaji Williams
Mobolaji Williams
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022